(HI,xnγ) 2005Po10,1982Po03,1981Ma28

	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 121, 561 (2014)	31-Mar-2014

Others: 1986Po01, 1985Po13, 1980Po07, 1979Po19.

2005Po10: ¹⁹⁸Pt(¹⁷O,5n γ), Enriched ¹⁹⁸Pt target, E=96 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$ at three angles, $\gamma\gamma(t)$, lifetimes, ce with the caesar array of Compton-suppressed Ge detectors and a superconducting electron spectrometer operated in lens mode. Same research group of 1982Po03.

1982Po03: ²⁰⁵Tl(¹⁰B,5n γ). Target: 96.4% enriched ²⁰⁵Tl, E=68 to 75 MeV. Measured $\gamma\gamma$ (t) and n γ (t) in the time range of 4 μ s. Measured $\gamma(\theta)$ for θ =90° to 150°. Detectors:Ge(Li) for γ rays, liquid scintillator for neutrons. Other: 1980Po07. ¹⁹⁸Pt(¹⁶O,4n γ). Target: 95.8% enriched ¹⁹⁸Pt, E=85 to 97 MeV. Measured $\gamma\gamma$ (t), n γ (t), $\gamma(\theta)$ for θ =0° to 90°. ¹⁹⁸Pt(¹⁷O,5n γ). Target: 95.8% enriched ¹⁹⁸Pt, E=94 to 98 MeV. Measured n γ (t) in the range of 2 μ s, E γ , I γ . Detectors:Ge(Li),Ge(Li) Compton-suppressed spectrometer. Measured conversion electrons. Detector: Si(Li) with a "MINI-orange" magnetic filter. The detection efficiency of theGe(Li) and of the electron spectrometer were determined using calibrated sources of ¹⁵²Eu, ²⁰⁷Bi, ¹¹³Sn, ¹³⁷Cs, and ⁶⁵Zn. Deduced γ -ray multipolarities. Measured half-lives using the pulsed-beam method.

1981Ma28: 202 Hg(12 C,4n γ). Target: 96.3% enriched 202 Hg, E=80 MeV. Measured differential perturbed angular distributions of γ rays (DPAD). Deduced g-factors, half-lives. Detector:Ge(Li).

1986Po01: 202 Hg(12 C,4n γ), E=78 MeV. Measured time-differential perturbed angular distribution of γ rays (TDPAD), g-factors. Detectors:Ge(Li).

1985Po13: ¹⁹⁸Pt(¹⁷O,5n γ). Target: 95.8% enriched ¹⁹⁸Pt, E=95 MeV. Measured γ (t), pulsed-beam method. Detectors:Ge(Li). Deduced level half-lives.

1979Po19: ²⁰⁴Pb(⁹Be,3n γ), E=40-55 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, γ (t) pulsed beam, $\gamma(\theta)$. Deduced γ -ray multipolarities, level half-lives.

²¹⁰Rn Levels

E(level) [†] &	J ^π @	T _{1/2} ‡	Comments
0.0 ^a	0^{+}		
643.90 ^a 10	2+		
1461.60 ^a 14	4+		
1545.10 14	4+		
1664.70 ^a 15	6+	7.6 ns 7	$T_{1/2}$: from 1980Po07. Other values: 7.6 ns 14 (1982Po03); 10.4 ns 10 (1985Po13).
x+1664.6 ^{<i>a</i>} 1	8+	644 ns 40	Additional information 1.
			T _{1/2} : weighted average of 631 ns 35 (1982P003), 750 ns 40 (DPAD) (1981Ma28), 742 ns 35 (1979P019), and 590 ns 20 (1980P007). g-factor=0.898 7 (TDPAD) (1986P001); g-factor=0.883 10 (DPAD) (1981Ma28).
x+2031.60.10	(8^{+})		
x+2265.79 8	9+	<21 ns	
x+2376.88 ^a 8	10^{+}	<1.4 ns	T _{1/2} : from 1985Po13.
x+2562.32 11	11-	64 ns <i>3</i>	$T_{1/2}^{1/2}$: weighted average of 64 ns 3 (1982Po03), 58 ns 4 (DPAD) (1981Ma28), 68 ns 4 (1979Po19).
			g-factor=1.105 10 (DPAD) (1981Ma28).
x+2922.62 ^u 12	12+	<1.4 ns	$T_{1/2}$: from 1985Po13.
x+3110.06 <i>13</i>	12-	<5.5 ns	
x+3248.06 ^{<i>a</i>} 13	14+	76 ns 7	$T_{1/2}$: weighted average of 72 ns 3 (1982Po03), 99 ns 8 (DPAD) (1981Ma28), and 102 ns 18 (1979Po19).
			g-factor=1.066 7 (TDPAD) (1986Po01); g-factor=1.043 20 (DPAD) (1981Ma28).
x+3404.14 12	$(13)^{-}$	<5.5 ns	
x+3782.81 14	$(14)^{-}$		
x+3812.40 ^{<i>a</i>} 16	17-	1.06 µs 5	$T_{1/2}$: weighted average of 1102 ns 62 (1982Po03), 1000 ns 125 (DPAD) (1981Ma28), and 998 ns 83 (1979Po19).
x + 2061 20 11	$(15)^{-}$	< 9 no	g-racior=1.052 J (TDFAD) (1980F001); g -racior=1.059 IU (DFAD) (1981Ma28).
x+3920.03 16	(15) (15^+)	< 5.5 ns	

²¹⁰Rn Levels (continued)

E(level) [†] &	Jπ @	T _{1/2} ‡	Comments
x+4351.70 19	(17^{-})		
x+4614.20 19	(18^{-})		
x+4730.70 22	(17-)		
x+4889.12 19	(15^{+})		
x+4898.95 20	$(16)^{+}$	<5.5 ns	
x+4913.72 22	(17^{+})		
x+4993.43 ^a 19	20+	12.3 ns 9	$T_{1/2}$: weighted average of 13.2 ns 7 (1985Po13) and 11.4 ns 7 (1982Po03). g-factor=1.116 5 (TDPAD) (1986Po01).
x+5046.41 22	(17^{+})		
x+5056.20 24	(18^{-})		
x+5162.8 3	(19 ⁻)		
x+5170.8 3	(19 ⁻)		
x+5253.87 22	(17^{+})		J^{π} : From Table 2. Not given in level scheme fig. 1 in 2005Po10.
x+5380.99 21	$(18)^{+}$	<5.5 ns	J^{π} : from figure 1 and text of 2005Po10; (17) ⁺ in Table 2.
x+5383.87 20	19+	<5.5 ns	
x+5684.64 21	$(19)^+$	<5.5 ns	
x+5861.0 4	$(20)^{-}$		
x+5866.33 20	21+	<5.5 ns	
x+5876.31 ^a 20	20^{+}	<7 ns	
x+6036.02 ^a 21	21^{+}	<7 ns	
x+6469.02 ^{<i>a</i>} 21	23^{+}	1.04 µs 7	g-factor=0.701 7 (TDPAD) (1986Po01).
x+6525.83 23	$(22)^{+}$		
x+6543.4 3	$(21)^+$		
x+6895.12 23	24^{+}	<35 ns	
x+7035.9 4	$(23)^{+}$		
x+7224.3 4	$(23)^{+}$		
x+7311.02 ^{<i>a</i>} 23	26^{-}	34 ns 2	g-factor=0.733 9 (TDPAD) (1986Po01).
x+7329.4 5	(24^{+})		
x+7379.8 3			
x+7419.3 4	(25^{+})		
x+7460.4 5	(24^{+})		
x+7875.12 25	(27 ⁻)		
x+7973.4 <i>3</i>	$(26)^{-}$		
x+7978.6 4	(27^{-})		
x+8263.3 5	(27^{-})		
x+8556.13 ^{<i>a</i>} 25	29^{+}	1.8 ns 2	$T_{1/2}$: from 1985Po13.
x+8887.4 9			
x+8899.1 4	(29 ⁺)		
x+8928.6 4	(29+)		
x+9249.6 ^{<i>a</i>} 3	30^{+}	<0.69 [#] ns	
x+9569.3 3	(30 ⁻)		
x+9735.6 4	(31-)		
x+9764.7 ^{<i>a</i>} 3	31+	<0.69 [#] ns	
x+10079.9 3	(31^{+})		
x+10086.8 ^{<i>a</i>} 3	32+	<0.69 [#] ns	
$x + 10752 1^{a} 4$	(34^{+})	<0.69 [#] ns	
x + 1083566	(33^+)	NU.U9 115	
x + 10055.00 x + 1097544	(34^+)		
x+1118595	(35^{-})		
x+11492.3.7	(36^{-})		
x+11978 4 7	(36^{-})		
$x + 12026 0^{a} 5$	(37-)	$<0.60^{\#}$ m	
AT12020.0" J	(37)	<0.09" IIS	

²¹⁰Rn Levels (continued)

[†] Deduced by evaluator from a least-squares fit to γ -ray energies.

- [‡] γ (t) pulsed-beam method (1982Po03), unless otherwise specified.
- [#] From 2005Po10.

^(a) Spin and parity assignments are based on γ -ray multipolarities and $\gamma(\theta)$. Shell-model configurations are based on a comparison between experimental level energies with calculated values where the four valence protons were restricted to the 1h9/2, 2f7/2, and 1i13/2 orbitals, and the neutron holes, to the $3p_{1/2}$, $3p_{3/2}$, and 2f5/2 orbitals. The strong E3 transitions from the 3812+x ($J^{\pi}=17^{-}$) and 4994+x ($J^{\pi}=20^{+}$) levels are consistent with systematics of E3 transitions in this mass region, and their strengths are comparable to those from the octupole state in ²⁰⁸Pb, and to the (i13/2 to h9/2) transition in ²⁰⁹Bi. This gives additional support to the assigned shell model configurations. The suggested core excited configurations for levels above the 6469+x "YRAST trap" explain the strong E3 transitions connecting these levels. See also 1986Po01 for a comparison of experimental g-factors and B(E3) values with semi-empirical shell model calculations which include couplings to the 3⁻ octupole vibration of the core. See Adopted Levels for evaluator's adopted values. For multi-particle configurations proposed for all the excited states in ²¹⁰Rn – please see 2005Po10 and 1982Po03.

 $\sqrt[k]{x<50}$ keV, based on detection efficiency of a possible γ ray between the x+1665 and 1665 levels (1982Po03).

^a Band(A): yrast sequence (2005Po10).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. &	α b	Comments
$(10^{@})$		x+4898.95	$(16)^{+}$	x+4889.12	(15^{+})			
(15 [@])		x+4913.72	(17^{+})	x+4898.95	$(16)^+$			
(≈45 [@])		x+1664.6	8+	1664.70	6+			E _{γ} : Estimated in 2006Ku26 (²¹⁴ Ra α decay:68.6 μ s) – γ ray not observed. Experimental limit \leq 50 in 1979Po19 and 1982Po03.
(82 [@])		x+3864.28	$(15)^{-}$	x+3782.81	$(14)^{-}$			
111.1 [‡] <i>1</i>	19 <i>3</i>	x+2376.88	10+	x+2265.79	9+	M1	9.73	α (K)=7.85 <i>12</i> ; α (L)=1.434 <i>21</i> ; α (M)=0.341 5 α (N)=0.0888 <i>13</i> ; α (O)=0.0194 <i>3</i> ; α (P)=0.00284 <i>4</i> Mult.: from α (exp)=14 <i>4</i> (transition intensity balance – 1982P003).
119.6 [#] 1	59 2	1664.70	6+	1545.10	4+	E2	3.88	α (K)=0.361 5; α (L)=2.60 4; α (M)=0.700 11 α (N)=0.182 3; α (O)=0.0368 6; α (P)=0.00411 6 Mult.: from α (exp)=4.4 4 (transition intensity balance – 1982P003).
127.4 2	4 1	x+5380.99	(18)+	x+5253.87	(17 ⁺)	M1	6.59	α (K)=5.32 8; α (L)=0.967 15; α (M)=0.230 4 α (N)=0.0599 9; α (O)=0.01311 20; α (P)=0.00191 3
133.0 2	2 1	x+5046.41	(17^{+})	x+4913.72	(17 ⁺)			
159.7 [‡] 1	74 5	x+6036.02	21+	x+5876.31	20+	M1 ^{<i>a</i>}	3.47	$\begin{array}{l} \alpha(\mathrm{K}){=}2.80 \; 4; \; \alpha(\mathrm{L}){=}0.507 \; 8; \; \alpha(\mathrm{M}){=}0.1204 \; 17 \\ \alpha(\mathrm{N}){=}0.0314 \; 5; \; \alpha(\mathrm{O}){=}0.00687 \; 10; \\ \alpha(\mathrm{P}){=}0.001003 \; 15 \\ \mathrm{Mult.: \; from \;} \alpha(\mathrm{exp}){=}5.2 \; 20 \; (\mathrm{transition \; intensity} \\ \mathrm{balance - 1982Po03). \;} \alpha(\mathrm{L})\mathrm{exp}{=}0.51 \; 2 \; \$ \\ \alpha(\mathrm{M})\mathrm{exp}{=}0.109 \; 14 \; (2005\mathrm{Po10}). \end{array}$
166.3 2	32	x+9735.6	(31-)	x+9569.3	(30 ⁻)	51	0.1000	
185.5 <i>I</i>	879	x+2562.32	11-	x+2376.88	10*	EI	0.1032	$\alpha(K)=0.0826 \ 12; \ \alpha(L)=0.01569 \ 22; \\ \alpha(M)=0.00373 \ 6 \\ \alpha(N)=0.000962 \ 14; \ \alpha(O)=0.000204 \ 3; \\ \alpha(P)=2.73\times10^{-5} \ 4 \\ Mult.: \ from \ \alpha(exp)<0.07 \ (transition intensity balance - 1982Po03); \ \alpha(L)exp=0.144 \ 17 \\ (deduced from prompt spectra - 2005Po10).$
191.7 [‡] <i>1</i>	43 9	x+5876.31	20+	x+5684.64	(19)+	M1	2.07	A ₂ =-0.06 <i>13</i> (2005Po10)

 $\gamma(^{210}\text{Rn})$

	(HI,xnγ) 2005Po10,1982Po03,1981Ma28 (continued)												
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult.&	$\alpha^{\boldsymbol{b}}$	Comments					
203.1 1	553 13	1664.70	6+	1461.60	4+	E2	0.495	$\begin{aligned} \alpha(\text{K}) &= 1.675 \ 24; \ \alpha(\text{L}) &= 0.302 \ 5; \\ \alpha(\text{M}) &= 0.0718 \ 11 \\ \alpha(\text{N}) &= 0.0187 \ 3; \ \alpha(\text{O}) &= 0.00409 \ 6; \\ \alpha(\text{P}) &= 0.000598 \ 9 \\ \text{Mult.: from } \alpha(\text{exp}) &= 1.7 \ 6 \ (\text{transition intensity balance}). \\ \text{A}_2 &= +0.16 \ 8 \ (2005\text{Po10}) \\ \alpha(\text{K}) &= 0.1594 \ 23; \ \alpha(\text{L}) &= 0.248 \ 4; \\ \alpha(\text{M}) &= 0.0663 \ 10 \end{aligned}$					
								$\begin{array}{l} \alpha(\mathrm{N}) = 0.01727 \ 25; \ \alpha(\mathrm{O}) = 0.00352 \ 5; \\ \alpha(\mathrm{P}) = 0.000405 \ 6 \\ \mathrm{Mult.: \ From \ } \alpha(\mathrm{L1}) \exp + \alpha(\mathrm{L2}) \exp = 0.161 \\ 11, \ \alpha(\mathrm{L3}) \exp = 0.092 \ 8, \ \alpha(\mathrm{M}) \exp = 0.071 \ 9 \\ (2005 \mathrm{Po10}). \end{array}$					
210.5 2 236.1 2 284.7 2 293.5 2	2 <i>1</i> 12 5 5 4 11 3	x+11185.9 x+7460.4 x+8263.3 x+7329.4	(35^{-}) (24^{+}) (27^{-}) (24^{+})	x+10975.4 x+7224.3 x+7978.6 x+7035.9	(34^+) $(23)^+$ (27^-) $(23)^+$								
294.1 <i>1</i>	14 3	x+3404.14	(13)-	x+3110.06	12-	M1	0.631	$\alpha(K)=0.511 \ 8; \ \alpha(L)=0.0914 \ 13;$ $\alpha(M)=0.0217 \ 3$ $\alpha(N)=0.00565 \ 8; \ \alpha(O)=0.001237 \ 18;$ $\alpha(P)=0.000181 \ 3$ Mult.: From $\alpha(K)\exp=0.45 \ 4 \ (2005Po10).$					
303.6 [‡] 1	119 5	x+5684.64	(19)+	x+5380.99	(18)+	M1+E2	0.36 23	$A_2 = -0.12 \ 10 \ (2005Po10)$ $\alpha(K) = 0.27 \ 20; \ \alpha(L) = 0.066 \ 18;$ $\alpha(M) = 0.016 \ 4$ $\alpha(N) = 0.0043 \ 10; \ \alpha(O) = 0.00091 \ 23;$ $\alpha(P) = 0.00012 \ 5$ Mult : From $\alpha(K) \exp[=0.16 \ 5 \ (2005Po10)]$					
315.2 <i>1</i> 319.7 <i>1</i>	9 <i>3</i> 13 <i>4</i>	x+10079.9 x+9569.3	(31^+) (30^-)	x+9764.7 x+9249.6	31^+ 30^+								
322.1 1	49 5	x+10086.8	32+	x+9764.7	31+	M1+E2	0.30 <i>19</i>	A ₂ =+0.07 21 (2005Po10) α (K)=0.23 17; α (L)=0.055 16; α (M)=0.014 4 α (N)=0.0035 9; α (O)=0.00076 21; α (P)=0.00010 4 Mult.: From α (exp)=0.14 9, α (exp) determined from analysis of γ-ray intensity balances in coincidence with the 665.3 transition as a direct conversion					
325.4 1	628 11	x+3248.06	14+	x+2922.62	12+	E2 ^{<i>a</i>}	0.1086	coefficient measurement was not possible. $A_2=+0.18 \ 3 \ (2005Po10)$ $\alpha(K)=0.0578 \ 9; \ \alpha(L)=0.0378 \ 6;$ $\alpha(M)=0.00987 \ 14$ $\alpha(N)=0.00257 \ 4; \ \alpha(O)=0.000531 \ 8;$ $\alpha(P)=6.43\times10^{-5} \ 9$ Mult.: from $\alpha(K)\exp=0.068 \ 7 \ (1982Po03);$ $\alpha(K)\exp=0.0542 \ 23,$ $\alpha(L)\exp=0.0542 \ 23,$					
325.5 1	18 5	x+5056.20	(18 ⁻)	x+4730.70	(17 ⁻)	M1	0.478	(2005Po10). $\alpha(K)=0.387\ 6;\ \alpha(L)=0.0691\ 10;$ $\alpha(M)=0.01640\ 23$ $\alpha(N)=0.00427\ 6;\ \alpha(O)=0.000935\ 14;$ $\alpha(P)=0.0001366\ 20$ Mult.: From $\alpha(K)\exp=0.50\ 4$ (deduced from prompt spectra – 2005Po10).					

γ ⁽²¹⁰Rn) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&	α b	Comments
343.0 2 355.0 1	6 1 63 10	x+8899.1 x+5253.87	(29 ⁺) (17 ⁺)	x+8556.13 x+4898.95	29 ⁺ (16) ⁺	M1	0.377	$\alpha(K)=0.306\ 5;\ \alpha(L)=0.0545\ 8;\ \alpha(M)=0.01292$
360.4 2	2 1	x+2922.62	12+	x+2562.32	11-	E1	0.0220	$\alpha(N)=0.00337 5; \alpha(O)=0.000737 11; \alpha(P)=0.0001076 15$ Mult.: From $\alpha(K)\exp=0.324 28$ (2005Po10). $\alpha(K)=0.0179 3; \alpha(L)=0.00312 5; \alpha(M)=0.000738 11$ $\alpha(N)=0.000191 3; \alpha(O)=4.10\times10^{-5} 6; \alpha(P)=5.71\times10^{-6} 8$ Mult.: From table 2 in 2005Po10.
367.0 1	27 8	x+2031.60 x+8928.6	(8^+) (20^+)	x+1664.6 x+8556.13	8+ 20+			
378.7 1	17 <i>4</i>	x+3782.81	$(14)^{-}$	x+3404.14	(13)-	M1	0.316	α (K)=0.256 4; α (L)=0.0457 7; α (M)=0.01083 I6 α (N)=0.00282 4; α (O)=0.000617 9; α (P)=9.02×10 ⁻⁵ 13
								Mult.: $\alpha(K)\exp=0.256\ 24$ (deduced from
379.0 <i>I</i> x381.5 <i>I</i>	28 7 >3	x+4730.70	(17 ⁻)	x+4351.70	(17 ⁻)			prompt spectra –2005Po10).
383.4 1	16 3	x+7419.3	(25 ⁺)	x+7035.9	(23)+			
x387.3 3 390.4 1	42 878	x+5383.87	19+	x+4993.43	20+	M1	0.291	A ₂ =+0.00 <i>13</i> (2005Po10) α (K)=0.236 <i>4</i> ; α (L)=0.0420 <i>6</i> ; α (M)=0.00996
								α (N)=0.00260 4; α (O)=0.000568 8; α (P)=8.30×10 ⁻⁵ 12 Mult.: From α (K)exp=0.28 4 (1982Po03); α (K)exp=0.32 5, α (L)exp=0.053 13 (2005Po10)
^x 390.4 3	63							(2005) 010).
^x 390.7 <i>3</i> 415.9 <i>1</i>	23 3	x+7311.02	26-	x+6895.12	24+	M2 ^{<i>a</i>}	0.750	I_{γ} : weak γ ray. $\alpha(K)=0.569 \ 8; \ \alpha(L)=0.1362 \ 19; \ \alpha(M)=0.0337$ 5
								α (N)=0.00885 <i>13</i> ; α (O)=0.00193 <i>3</i> ; α (P)=0.000277 <i>4</i> Mult.: From α (exp)=0.50 <i>14</i> , α (K)exp=0.63 <i>4</i> , α (L)exp=0.149 <i>16</i> (2005Po10)
426.1 <i>1</i>	59 8	x+6895.12	24+	x+6469.02	23+	M1	0.230	$A_{2}=-0.14 \ 18 \ (2005Po10)$ $\alpha(K)=0.187 \ 3; \ \alpha(L)=0.0331 \ 5; \ \alpha(M)=0.00785$
								α (N)=0.00205 3; α (O)=0.000448 7; α (P)=6.54×10 ⁻⁵ 10 Mult.: From α (K)exp=0.29 3, α (L)exp=0.039 9 (2005Po10).
433.0 1	342 25	x+6469.02	23+	x+6036.02	21+	E2 ^{<i>a</i>}	0.0501	$A_{2}=+0.245 (2005Po10)$ $\alpha(K)=0.03165; \alpha(L)=0.0137620;$ $\alpha(M)=0.003535$ $\alpha(N)=0.00092013; \alpha(O)=0.0001923;$ $\alpha(P)=2.42\times10^{-5}4$ Mult: from $\alpha(K)$ exp=0.0367 (1982Po03);
460.2 <i>1</i> 467.2 <i>1</i>	6 <i>1</i> 25 5	x+3864.28 x+5380.99	$(15)^{-}$ $(18)^{+}$	x+3404.14 x+4913.72	(13) ⁻ (17 ⁺)			α (K)exp=0.034 4, α (L)exp=0.0130 12, α (M)exp=0.0041 10 (2005Po10).

 $^{210}_{86}\mathrm{Rn}_{124}\text{-}6$

(HI,xnγ) 2005Po10,1982Po03,1981Ma28 (continued)

γ ⁽²¹⁰Rn) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. ^{&}	δ^{c}	$\alpha^{\boldsymbol{b}}$	Comments
482.0 1	13 2	x+5380.99	$(18)^{+}$	x+4898.95	$(16)^{+}$				
492.4 [‡] <i>1</i>	52 6	x+5876.31	20+	x+5383.87	19+	M1+E2		0.10 6	A ₂ =-0.41 21 (2005Po10) α (K)=0.08 6; α (L)=0.016 7; α (M)=0.0038 15 α (N)=0.0010 4; α (O)=0.00021 9; α (P)=3.0×10 ⁻⁵ 14 Mult : From α (K)exp=0.065 4 \$
515.1 <i>1</i>	86 8	x+9764.7	31+	x+9249.6	30+	M1		0.1385	$\alpha(L)\exp=0.010\ 2\ (2005Po10).$ $A_{2}=-0.42\ 14\ (2005Po10)$ $\alpha(K)=0.1124\ 16;\ \alpha(L)=0.0199\ 3;$ $\alpha(M)=0.00470\ 7$ $\alpha(N)=0.001226\ 18;\ \alpha(O)=0.000268\ 4;$ $\alpha(P)=3.92\times10^{-5}\ 6$
539.3 1	58 10	x+4351.70	(17 ⁻)	x+3812.40	17-	M1		0.1226	Mult.: from α (K)exp=0.11 3 (1982Po03); α (K)exp=0.136 7 (2005Po10). A ₂ =+0.8 3 (2005Po10) α (K)=0.0995 14; α (L)=0.01756 25; α (M)=0.00416 6 α (N)=0.001083 16; α (O)=0.000237 4;
545.7 1	748 20	x+2922.62	12+	x+2376.88	10+	E2 ^a		0.0287	α (P)=3.47×10 ⁻⁵ 5 Mult.: From α (K)exp=0.088 6 (deduced from prompt spectra – 2005Po10). α (K)=0.0199 3; α (L)=0.00661 10; α (M)=0.001668 24 α (N)=0.000434 6; α (O)=9.15×10 ⁻⁵ 13; α (D)=1.180×10 ⁻⁵ 17
547.7 1	64 6	x+3110.06	12-	x+2562.32	11-	MI		0.1177	$\begin{array}{l} \alpha(P)=1.189\times10^{-77} \\ \text{Mult.: from } \alpha(\text{K})\exp=0.016 \ 4 \\ (1982Po03)\$ \ \alpha(\text{K})\exp=0.018 \ 1 \ \$ \\ \alpha(\text{L})\exp+\alpha(\text{L}2)\exp=0.0060 \ 4 \ \$ \\ \alpha(\text{L}3)\exp=0.00144 \ 15 \ (2005Po10). \\ \alpha(\text{K})=0.0955 \ 14; \ \alpha(\text{L})=0.01685 \ 24; \\ \alpha(\text{M})=0.00139 \ 15; \ \alpha(\text{O})=0.000228 \ 4; \\ \alpha(\text{P})=3.33\times10^{-5} \ 5 \\ \text{Mult.: from } \alpha(\text{K})\exp=0.083 \ 16 \\ (1982Po03)\$ \ \alpha(\text{K})\exp=0.114 \ 5 \ \$ \\ \alpha(\text{L})\exp=0.012 \ 3 \ (\text{deduced from} \\ \text{prompt spectra } -2005Po10). \end{array}$
548.6 2 x558 0 3	20 6 13 5	x+5162.8	(19 ⁻)	x+4614.20	(18-)				
564.2 <i>I</i> 564.3 <i>I</i>	50 <i>10</i> 600 <i>20</i>	x+7875.12 x+3812.40	(27 ⁻) 17 ⁻	x+7311.02 x+3248.06	26 ⁻ 14 ⁺	E3		0.0851	A ₂ =+0.20 8 (2005Po10) α (K)=0.0454 7; α (L)=0.0294 5; α (M)=0.00775 11 α (N)=0.00203 3; α (O)=0.000423 6; α (P)=5.32×10 ⁻⁵ 8 Mult.: from α (K)exp=0.051 5 (1982Po03); α (K)exp=0.0462 13, α (L3)exp=0.0037 4, α (M)exp=0.0074 4 (205Po10)
566.9 <i>3</i>	45 10	x+7035.9	(23)+	x+6469.02	23+	M1		0.1074	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0872 \ 13; \ \alpha(\mathrm{L}) = 0.01537 \ 22; \\ \alpha(\mathrm{M}) = 0.00364 \ 6 \\ \alpha(\mathrm{N}) = 0.000948 \ 14; \ \alpha(\mathrm{O}) = 0.000207 \ 3; \end{array}$

 ${}^{210}_{86} Rn_{124}$ -7

(HI,xnγ) 2005Po10,1982Po03,1981Ma28 (continued)

γ ⁽²¹⁰Rn) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. <mark>&</mark>	δ^{C}	$\alpha^{\boldsymbol{b}}$	Comments
									$\alpha(P)=3.03\times10^{-5} 5$ Mult.: From $\alpha(K)$ exp=0.098 13 (deduced from prompt spectra - 2005Po10).
601.2 ⁺ 1	219 <i>13</i>	x+2265.79	9+	x+1664.6	8+	M1+E2	-0.20 5	0.0893 <i>19</i>	A ₂ =-0.09 <i>15</i> (2005Po10) α (K)=0.0724 <i>16</i> ; α (L)=0.01282 <i>25</i> ; α (M)=0.00304 <i>6</i> α (N)=0.000791 <i>15</i> ; α (O)=0.000173 <i>4</i> ; α (P)=2.53×10 ⁻⁵ <i>5</i> Mult δ_{1} from α (K) or p=0.065
602.7 1	29 5	x+6469.02	23+	x+5866.33	21+	E2		0.0229	7, and $\gamma(\theta)$ (1982Po03); $\alpha(K)exp=0.056\ 3\$ $\alpha(L)exp=0.015\ I\ (2005Po10).$ $\alpha(K)=0.01635\ 23;$ $\alpha(L)=0.00494\ 7;$ $\alpha(M)=0.001237\ I8$
									α (N)=0.000322 5; α (O)=6.81×10 ⁻⁵ 10; α (P)=8.97×10 ⁻⁶ 13 Mult.: From tables 2 and 3 and text of 2005Po10; M1+E2 in Table 1
616.2 <i>1</i>	58 7	x+3864.28	(15)-	x+3248.06	14+	E1		0.00725	$A_{2} = -0.10 \ 27 \ (2005Po10)$ $\alpha(K) = 0.00596 \ 9;$ $\alpha(L) = 0.000982 \ 14;$ $\alpha(M) = 0.000230 \ 4$ $\alpha(N) = 5.97 \times 10^{-5} \ 9;$ $\alpha(O) = 1.293 \times 10^{-5} \ 19;$
638.3 1	29.4	x+5684.64	$(19)^+$	x+5046.41	(17 ⁺)				$\alpha(0) = 1.233 \times 10^{-6} \ 3$ $\alpha(P) = 1.84 \times 10^{-6} \ 3$ Mult.: from $\alpha(K) \exp{<0.007}$ (1982Po03).
643.9 1	1000 30	643.90	2+	0.0	$(17) 0^+$	E2		0.0198	$A_{2}=+0.16 \ 3 \ (2005Po10)$ $\alpha(K)=0.01440 \ 21;$ $\alpha(L)=0.00409 \ 6;$ $\alpha(M)=0.001021 \ 15$ $\alpha(N)=0.000266 \ 4;$ $\alpha(O)=5.63\times10^{-5} \ 8;$
659.5 <i>1</i>	31 5	x+6525.83	(22)+	x+5866.33	21+	M1		0.0720	$\alpha(P)=7.49\times10^{-6} 11$ Mult.: from $\alpha(K)exp=0.014 2$, $\alpha(L)exp=0.0034 4$ (1982Po03). $\alpha(K)=0.0585 9$; $\alpha(L)=0.01027$ 15 ; $\alpha(M)=0.00243 4$
									α (N)=0.000633 <i>9</i> ; α (O)=0.0001385 <i>20</i> ; α (P)=2.03×10 ⁻⁵ <i>3</i> Mult.: From α (K)exp=0.058 <i>8</i> ,
662.4 2	21 3	x+7973.4	(26)-	x+7311.02	26-	M1		0.0712	$\alpha(L)\exp=0.015 \ 4 \ (2005Po10).$ $\alpha(K)=0.0579 \ 9; \ \alpha(L)=0.01015$ $15; \ \alpha(M)=0.00240 \ 4$ $\alpha(N)=0.000625 \ 9;$ $\alpha(O)=0.0001369 \ 20;$ $\alpha(P)=2.00\times10^{-5} \ 3$

 $^{210}_{86}\mathrm{Rn}_{124}\text{-}8$

(HI,xnγ) 2005Po10,1982Po03,1981Ma28 (continued)

γ ⁽²¹⁰Rn) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\alpha^{\boldsymbol{b}}$	Comments
								Mult.: α (K)exp=0.095 9, α (L)exp=0.025 5 (deduced from prompt spectra – 2005Pe10)
665.3 2 667.6 3 672.0 1	23 <i>3</i> 6 <i>3</i> 21 <i>3</i> 12 <i>3</i>	x+10752.1 x+7978.6 x+3920.03 x+3782.81	(34^+) (27 ⁻) (15 ⁺) (14) ⁻	x+10086.8 x+7311.02 x+3248.06 x+3110.06	32 ⁺ 26 ⁻ 14 ⁺ 12 ⁻			20051010).
677.1 2	16.8	x+6543.4	(14) $(21)^+$	x+5866.33	21+	M1	0.0672	α (K)=0.0546 8; α (L)=0.00958 14; α (M)=0.00227 4 α (N)=0.000590 9; α (O)=0.0001292 19; α (P)=1.89×10 ⁻⁵ 3
681.4 2	18 4	x+8556.13	29+	x+7875.12	(27 ⁻)	M2	0.1700	Mult.: From α (K)exp=0.05 2 (2005Po10). α (K)=0.1328 <i>19</i> ; α (L)=0.0281 <i>4</i> ; α (M)=0.00683 <i>10</i> α (N)=0.00179 <i>3</i> ; α (O)=0.000390 <i>6</i> ; α (P)=5.64×10 ⁻⁵ <i>8</i>
690.2 2		x+5861.0	(20)-	x+5170.8	(19 ⁻)	M1	0.0639	Mult.: From Table 2 in 2005Po10. $\alpha(K)=0.0519 \ 8; \ \alpha(L)=0.00910 \ I3; \ \alpha(M)=0.00215 \ 3 \ \alpha(N)=0.000561 \ 8; \ \alpha(O)=0.0001228 \ I8; \ \alpha(P)=1.80\times10^{-5} \ 3 \ Mult.: From \ \alpha(K)exp=0.08 \ 3 \ (deduced from prompt spectra - 2005Po10).$
693.5 1	88 9	x+9249.6	30+	x+8556.13	29+	M1+E2	0.040 23	I _γ : weak transition. $\alpha(K)=0.032 \ 20; \ \alpha(L)=0.006 \ 3; \ \alpha(M)=0.0015 \ 7 \ \alpha(N)=0.00038 \ 17; \ \alpha(O)=8.E-5 \ 4; \ \alpha(P)=1.2\times10^{-5} \ 6 \ Mult.: \ \alpha(K)exp=0.020 \ 3 \ (deduced from prompt spectra - 2005Po10).$
^x 705.1 <i>4</i> 712.3 <i>1</i>	8 <i>3</i> 700 26	x+2376.88	10+	x+1664.6	8+	E2 ^{<i>a</i>}	0.01602	A ₂ =+0.21 9 (2005Po10) $\alpha(K)=0.01189 \ 17; \ \alpha(L)=0.00311 \ 5; \ \alpha(M)=0.000770 \ 11$ $\alpha(N)=0.000201 \ 3; \ \alpha(O)=4.27\times10^{-5} \ 6; \ \alpha(P)=5.74\times10^{-6} \ 8$ Mult.: from $\alpha(K)$ exp=0.011 1 (1982Po03); $\alpha(K)$ exp=0.0112 5 \$ $\alpha(L)$ exp=0.0035 2 (2005Po10)
740.2 <i>5</i> 755.7 <i>5</i>	40 <i>10</i> 9 <i>3</i>	x+11492.3 x+10835.6	(36 ⁻) (33 ⁺)	x+10752.1 x+10079.9	(34 ⁺) (31 ⁺)			<i>a</i> (E)exp=0.0055 2 (20051 010).
769.3 5 792.5 5 801.8 1	193 73 7115	x+11978.4 x+4614.20	(36 ⁻) (18 ⁻)	x+11185.9 x+3812.40	(35 ⁻) 17 ⁻	M1	0.0431	A ₂ =-0.28 20 (2005Po10) α (K)=0.0351 5; α (L)=0.00612 9; α (M)=0.001448 21 α (N)=0.000377 6; α (O)=8.26×10 ⁻⁵ 12; α (P)=1 208×10 ⁻⁵ 17
								Mult.: From α (K)exp=0.0311 21, α (L)exp=0.0087 10 (deduced from prompt spectra – 2005Po10).
817.7 [‡] 1	827 30	1461.60	4+	643.90	2+	E2	0.01207	$A_2 = +0.19 \ 3 \ (2005Po10)$ $\alpha(K) = 0.00918 \ 13; \ \alpha(L) = 0.00218 \ 3;$ $\alpha(M) = 0.000535 \ 8$ $\alpha(N) = 0.0001392 \ 20; \ \alpha(O) = 2.98 \times 10^{-5} \ 5;$

γ ⁽²¹⁰Rn) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. <mark>&</mark>	$\alpha^{\boldsymbol{b}}$	Comments
841.9 <i>I</i>	40 7	x+3404.14	(13)-	x+2562.32	11-	E2	0.01139	$\alpha(P)=4.06\times10^{-6} 6$ Mult.: From $\alpha(K)\exp=0.0092 3$, $\alpha(L)\exp=0.00203 13 (2005Po10)$. $\alpha(K)=0.00870 13$; $\alpha(L)=0.00203 3$; $\alpha(M)=0.000497 7$ $\alpha(N)=0.0001292 18$; $\alpha(O)=2.77\times10^{-5} 4$; $\alpha(P)=3.79\times10^{-6} 6$ Mult.: from $\alpha(K)\exp=0.017 2 (1982Po03)$; $\alpha(K)\exp=0.011 2 (2005Po10)$.
842.0 [‡] <i>1</i>	230 30	x+7311.02	26-	x+6469.02	23 ⁺	E3 ^{<i>a</i>}	0.0291	$A_{2}=+0.47 \ 9 \ (2005Po10)$ $\alpha(K)=0.0196 \ 3; \ \alpha(L)=0.00709 \ 10;$ $\alpha(M)=0.00181 \ 3$ $\alpha(N)=0.000473 \ 7; \ \alpha(O)=0.0001001 \ 14;$ $\alpha(P)=1.324\times10^{-5} \ 19$ Mult.: from $\alpha(K)\exp=0.017 \ 2 \ (1982Po03);$ $\alpha(K)\exp=0.0206 \ 18 \ \ \alpha(L)\exp=0.0072 \ 8$ $(2005Po10).$
x868.6 3	12 3	AT / 3/ 9.0		XT0525.85	(22)			
872.9 1	154 8	x+5866.33	21+	x+4993.43	20+	M1	0.0346	A ₂ =-0.31 <i>10</i> (2005Po10) $\alpha(K)$ =0.0281 4; $\alpha(L)$ =0.00490 7; $\alpha(M)$ =0.001157 <i>17</i> $\alpha(N)$ =0.000301 5; $\alpha(O)$ =6.60×10 ⁻⁵ <i>10</i> ; $\alpha(P)$ =9.66×10 ⁻⁶ <i>14</i> Mult.: from $\alpha(K)$ exp=0.024 3 and $\alpha(L)$ exp≈0.008 (1982Po03); $\alpha(K)$ exp=0.0167 <i>11</i> , $\alpha(L)$ exp=0.0035 8 (2005Po10).
882.9 [‡] 2	92 8	x+5876.31	20+	x+4993.43	20+	M1	0.0336	A ₂ =+0.29 <i>15</i> (2005Po10) α (K)=0.0273 <i>4</i> ; α (L)=0.00475 <i>7</i> ; α (M)=0.001123 <i>16</i> α (N)=0.000292 <i>4</i> ; α (O)=6.40×10 ⁻⁵ <i>9</i> ; α (P)=9.37×10 ⁻⁶ <i>14</i> Mult.: from α (K)exp=0.029 <i>4</i> (1982Po03); α (K)exp=0.0273 <i>14</i> , α (L)exp=0.0052 <i>7</i> (2005Po10).
888.6 2 897.6 2	12 3 20 3	x+10975.4 x+2562.32	(34^{+}) 11^{-}	x+10086.8 x+1664.6	32* 8 ⁺	E3	0.0249	$\alpha(K)=0.01717 24; \alpha(L)=0.00579 9;$
901.2 <i>1</i>	192 18	1545.10	4+	643.90	2+	E2	0.00995	$\begin{aligned} &\alpha(M) = 0.001468 \ 21 \\ &\alpha(N) = 0.000384 \ 6; \ \alpha(O) = 8.14 \times 10^{-5} \ 12; \\ &\alpha(P) = 1.085 \times 10^{-5} \ 16 \\ &\text{Mult.: from } \alpha(K) \exp < 0.03 \ (1982Po03); \\ &\alpha(K) \exp = 0.015 \ 3 \ (\text{deduced from prompt} \ \text{spectra} - 2005Po10). \\ &A_2 = +0.23 \ 13 \ (2005Po10) \\ &\alpha(K) = 0.00768 \ 11; \ \alpha(L) = 0.001719 \ 24; \\ &\alpha(M) = 0.0001090 \ 16; \ \alpha(O) = 2.34 \times 10^{-5} \ 4; \end{aligned}$
914.0 8 969.2 2	10 <i>3</i> 12 <i>3</i>	x+8887.4 x+4889.12	(15 ⁺)	x+7973.4 x+3920.03	(26) ⁻ (15 ⁺)	M1+E2	0.017 9	$\alpha(P)=3.22\times10^{-6} 5$ Mult.: $\alpha(K)\exp=0.0075 6$, $\alpha(L)\exp=0.0018 2$ (2005Po10). $\alpha(K)=0.014 8$; $\alpha(L)=0.0026 12$; $\alpha(M)=0.0006 3$ $\alpha(N)=0.00016 7$; $\alpha(O)=3.5\times10^{-5} 16$;

$\gamma(^{210}\text{Rn})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. <mark>&</mark>	α b	Comments
×1014.6.5	Q /							α (P)=5.0×10 ⁻⁶ 23 Mult.: From α (K)exp=0.016 4 (2005Po10).
1014.6 3 1035.0 3 1086.5 2	8 4 36 7 37 7	x+4898.95 x+4898.95	(16) ⁺ (16) ⁺	x+3864.28 x+3812.40	(15) ⁻ 17 ⁻	E1	0.00254	$\alpha(K)=0.00211 \ 3; \ \alpha(L)=0.000332 \ 5; \\ \alpha(M)=7.75\times10^{-5} \ 11 \\ \alpha(N)=2.01\times10^{-5} \ 3; \ \alpha(O)=4.38\times10^{-6} \ 7; \\ \alpha(P)=6.33\times10^{-7} \ 9$
1106.2 2	22 5	x+4889.12	(15 ⁺)	x+3782.81	(14)-			Mult.: From α (K)exp=0.003 <i>1</i> (2005Po10).
1181.0 [‡] <i>I</i>	395 12	x+4993.43	20+	x+3812.40	17-	E3	0.01333	A ₂ =+0.19 5 (2005Po10) α (K)=0.00989 14; α (L)=0.00259 4; α (M)=0.000643 9 α (N)=0.0001678 24; α (O)=3.60×10 ⁻⁵ 5; α (P)=4.94×10 ⁻⁶ 7; α (IPF)=6.95×10 ⁻⁷ 10
1245.0 <i>I</i>	112 10	x+8556.13	29+	x+7311.02	26-	E3 ^{<i>a</i>}	0.01189	Mult.: from α (K)exp=0.0084 9 (1982P003); α (K)exp=0.0097 5, α (L)exp=0.0024 3, α (M)exp=0.00082 19 (2005Po10). A ₂ =+0.25 10 (2005Po10)
								α (K)=0.00891 <i>13</i> ; α (L)=0.00225 <i>4</i> ; α (M)=0.000555 <i>8</i> α (N)=0.0001448 <i>21</i> ; α (O)=3.11×10 ⁻⁵ <i>5</i> ; α (P)=4.29×10 ⁻⁶ <i>6</i> ; α (IPF)=2.71×10 ⁻⁶ <i>4</i> Mult.: from α (K)exp=0.0084 <i>13</i>
1273.9 2	5 2	x+12026.0	(37 ⁻)	x+10752.1	(34+)	E3	0.01132	(1982Po03), \$ α (K)exp=0.0092 5 \$ α (L)exp=0.0029 2 α (M)exp=0.00062 16 (2005Po10). α (K)=0.00851 12; α (L)=0.00211 3; α (M)=0.000521 8
1050.0.2	27.10		(22)+	5977.00	21+			$\alpha(N) = 0.0001359 \ I9; \ \alpha(O) = 2.92 \times 10^{-5} \ 4; \ \alpha(P) = 4.03 \times 10^{-6} \ 6; \ \alpha(IPF) = 4.07 \times 10^{-6} \ 6$ Mult.: From $\alpha(K) \exp = 0.010 \ 3, \ \alpha(L) \exp = 0.0031 \ I2 \ (deduced from prompt spectra - 2005Po10).$ Additional information 2.
1358.0 <i>3</i> 1358.4 2	27 10 27 10	x+7224.3 x+5170.8	(23) ⁺ (19 ⁻)	x+5866.33 x+3812.40	21 ⁺ 17 ⁻	E2	0.00459	$\begin{aligned} &\alpha(\text{K}) = 0.00366 \ 6; \ \alpha(\text{L}) = 0.000686 \ 10; \\ &\alpha(\text{M}) = 0.0001638 \ 23 \\ &\alpha(\text{N}) = 4.26 \times 10^{-5} \ 6; \ \alpha(\text{O}) = 9.23 \times 10^{-6} \ 13; \\ &\alpha(\text{P}) = 1.313 \times 10^{-6} \ 19; \ \alpha(\text{IPF}) = 2.49 \times 10^{-5} \\ &4 \\ &\text{Mult.: From } \alpha(\text{K}) \text{exp} = 0.0032 \ 6 \ (\text{deduced from prompt spectra} - 2005\text{Po}10). \end{aligned}$

[†] From 2005Po10, except otherwise noted.

[‡] Weighted average of data from 2005Po10 and 1982Po03.

[#] From 1982Po03.

[@] Transition not observed, but required by coincidence data or systematic considerations (2005Po10).

[&] From measured α (K)exp and α (L)exp values in 2005Po10 and 1982Po03. Measured values are statistically consistent from these

$\gamma(^{210}\text{Rn})$ (continued)

two measurements.

two measurements. ^a Stretched transition, from $\gamma(\theta)$ (1982Po03). ^b Additional information 3. ^c If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities. ^x γ ray not placed in level scheme.

²¹⁰₈₆Rn₁₂₄

Legend

(HI,xnγ) 2005Po10,1982Po03,1981Ma28

 $^{210}_{86} Rn_{124}$

(HI,xnγ) 2005Po10,1982Po03,1981Ma28

²¹⁰₈₆Rn₁₂₄