				History					
Туре				Author Citation Literature Cutoff Date					
Full Evaluation M. Sham				nsuzzoha Basunia NDS 121, 561 (2014) 31-Mar-2014					
$Q(\beta^{-}) = -6272 \ 16; S$	S(n)=874	47 21; S(p)=40	011 7; Q(a	x)=6158.9 22 2012Wa38					
				²¹⁰ Rn Levels					
				Cross Reference (XREF) Flags					
				$210 E_{\rm T} = 10 e_{\rm T} (2.18 m/s)$					
				B 214 Ra α decay (2.46 s)					
				C 214 Ra α decay (68.6 μ s)					
				D (HI,xn γ)					
E(level) ^{†‡#}	J ^π @	$T_{1/2}^{\dagger}$	XREF	Comments					
0.0	0^{+}	2.4 h <i>l</i>	ABCD	$\%\alpha$ =96 1; $\%\varepsilon$ + $\%\beta^+$ =4 1					
				$T_{1/2}$: from 1971Go35. Other values: 2.4 h (1963Uh01), 2.42 h 5 (1968Cr02). Others: 1949Gh16, 1955Mo68, 1971Ho01					
				From 1955Mo68, 1971Go35.					
643.90 ^{&} 10	2^{+}		ABCD	J^{π} : 644 γ E2 to 0 ⁺ .					
1461.60 ^{&} 14	$(4)^+$		A CD	J^{π} : 818 γ E2 to 2 ⁺ .					
1545.10 <i>14</i>	$(4)^{+}$	76 m 7	A D	J': 901 γ E2 to 2', 120 γ E2 from (6)'.					
1004.70-7 15	(0)	7.0 IIS 7	A CD	$T_{1/2}$: from 1980Po07. Other values: 7.6 ns 14 (1982Po03); 10.4 ns 10 (1985Po13).					
x+1664.6 ^{&} 1	(8 ⁺)	644 ns 40	CD	μ =7.184 56; Q=0.31 4					
				Additional information 1.					
				E(level): 1709 30 (214 Ra α decay:68.6 μ s).					
				J^{π} : energy systematics of $J^{\pi}=8^+$ state in ²⁰⁶ Rn, ²⁰⁸ Rn, and ²¹² Rn.					
				$T_{1/2}$: weighted average of 631 ns 35 (1982Po03), 750 ns 40 (DPAD) (1981Ma28) 742 ns 35 (1979Po19) and 590 ns 20 (1980Po07)					
				g-factor=0.898 7 (TDPAD) (1986Po01); g -factor=0.883 10 (DPAD) (1981Ma28).					
				μ : Differential perturbed angular distribution of γ rays (DPAD) (108 (D=01, 108 (D=17)) Other ratios, 7.0(4, 80, (DPAD), (108 (M=28, 108 (D=17)))					
				(1980P001,1989Ra17). Other value: 7.004 80 (DPAD) (1981Ma28,1989Ra17). O: Differential perturbed angular distribution of γ rays (DPAD)					
			_	(1986Be40,1989Ra17).					
x+2031.60 10 x+2265 79 8	(8^+) $(9)^+$	<21 ns	D	J^{π} : 36/ γ to (8 ⁺). I^{π} : 601 γ M1+F2 to (8 ⁺)					
x+2376.88 8	$(10)^+$	<1.4 ns	D	J^{π} : 111 γ M1 to (9) ⁺ , 712 γ stretched E2 to (8 ⁺).					
				T _{1/2} : from 1985Po13.					
x+2562.31 11	$(11)^{-}$	64 ns <i>3</i>	D	$\mu = 12.16 \ II$ $I^{\pi} = 185 \times F1 \ to \ (10)^{+}$					
				$T_{1/2}$: weighted average of 64 ns 3 (1982Po03), 58 ns 4 (DPAD) (1981Ma28),					
				68 ns 4 (1979Po19).					
				g-lactor=1.105 <i>IU</i> (DPAD) (1981Ma28). μ : differential perturbed angular distribution of γ rays (DPAD)					
				(1981Ma28,1989Ra17).					
x+2922.63 ^{&} 12	$(12)^{+}$	<1.4 ns	D	J^{π} : 546 γ E2 to (10) ⁺ .					
x+3110.05.13	$(12)^{-}$	<5.5 ns	ם	$I_{1/2}$: from 1985P013. I^{π} : 547 γ M1 to (11) ⁻ .					
x+3248.06 ^{&} 13	$(12)^+$	76 ns 7	D	$\mu = 14.92 \ 10$					
	、 · /		-	J^{π} : 325 γ stretched E2 to (12) ⁺ .					
				$T_{1/2}$: weighted average of 72 ns 3 (1982Po03), 99 ns 8 (DPAD) (1981Ma28),					

²¹⁰Rn Levels (continued)

E(level) ^{†‡#}	J ^π @	T _{1/2} †	XREF	Comments
				and 102 ns 18 (1979Po19).
				g-factor=1.066 7 (TDPAD) (1986Po01); g-factor=1.043 20 (DPAD)
				(1981Ma28).
				μ : Differential perturbed angular distributions of γ rays (DPAD)
- 2404 14 12	$(12)^{-}$	- F F	D	(1986Po01, 1989Ra17). Other value: 14.60 28 (DPAD) (1981Ma28).
X + 3404.14 IZ x + 3782 81 IA	(13) $(14)^{-}$	<3.3 ns	ע	J^{**} : 842 γ E2 10 (11) , 294 γ M1 10 (12) . I^{π} : 378 7 $_{22}$ M1 to (13) ⁻
$x + 3812 10^{14}$	$(17)^{-1}$	1.06 // 5	ע	y = 17.88 + 0.0 = 0.86 + 0.0
X+3612.40 ¹¹ 10	(17)	$1.00 \ \mu s \ J$	D	$\mu = 17.88 \ 9, \ Q = 0.80 \ 10$ I ^{π} : 564 γ F3 to (14) ⁺
				$T_{1/2}$: weighted average of 1102 ns 62 (1982Po03), 1000 ns 125 (DPAD)
				(1981Ma28), and 998 ns 83 (1979Po19).
				g-factor=1.052 5 (TDPAD) (1986Po01); g-factor=1.039 10 (DPAD)
				(1981Ma28).
				μ : Differential perturbed angular distribution of γ rays (DPAD)
				(1980P001, 1989Ra17). Other values: $+17.87700$ (DPAD) (1989Ra17), 17.00 17 (DPAD) (1081M ₂ 28)
				Ω : Differential perturbed angular distribution of γ rays (DPAD)
				(1986Be40,1989Ra17).
x+3864.28 14	(15^{-})	<8 ns	D	J^{π} : 616 γ (E1) to (14) ⁺ .
x+3920.03 16	(15^{+})	<5.5 ns	D	J^{π} : 672 γ to (14) ⁺ . Expected from shell-model calculation (1982Po03).
x+4351.70 19	(17 ⁻)		D	J^{π} : 539.3 γ M1 to (17) ⁻ .
x+4614.20 <i>19</i>	(18^{-})		D	J^{π} : 801.8 γ to (17) ⁻ .
x+4/30.70 22	(17)		D	J^{*} : $3/9\gamma$ to (17).
x + 4809.13 19 x + 4808 94 20	(15^{+})	<5.5 ns	ם ח	J^{π} : 1086 5 γ F1 to (17) ⁻ 1035 γ to (15 ⁻)
x+4913.72 22	(10^{-})	NO.0 IIS	D	5 . 1000.57 E1 to (17) , 10557 to (15).
x+4993.43 ^{&} 19	$(20)^{+}$	12.3 ns 9	D	$\mu = 22.3 I$
	()			J^{π} : 1181 γ E3 to (17) ⁻ .
				$T_{1/2}$: weighted average of 13.2 ns 7 (1985Po13) and 11.4 ns 7 (1982Po03).
				g-factor=1.116 5 (TDPAD) (1986P001).
				μ : Differential perturbed angular distribution of γ rays (DPAD)
x + 5046 41 22	(17^{+})		л	(1980P001, 1989Ra17).
x + 5056 20 24	(17) (18^{-})		ם ח	I^{π} : 325 5 \times M1 to (17 ⁻).
x+5162.8 3	(10^{-})		D	J^{π} : 548.6 γ to (18 ⁻).
x+5170.8 3	(19 ⁻)		D	J^{π} : 1358.4 γ E2 to (17) ⁻ .
x+5253.87 22	(17^{+})		D	J^{π} : 355 γ M1 to (16 ⁺).
x+5380.99 21	(18^{+})	<5.5 ns	D	J^{π} : 127.4 γ M1 to (17 ⁺).
x+5383.87 20	(19^+)	<5.5 ns	D	J^{n} : 390 γ (M1) to (20) ⁺ .
X+3684.64 21	(19^{+})	<5.5 ns	ע ת	J [*] : 303γ M1+E2 to (18 ⁺), 038.3γ to (17 ⁺).
x+5866.33 20	$(20^{-})^{+}$	<5.5 ns	D	J^{π} : 872.9 γ M1 to (20) ⁺ .
$x + 5876 31^{\&} 20$	$(20)^+$	<7 ns	D	I^{π} : 882 9 γ M1 to (20) ⁺ 491 4 γ M1 to (19 ⁺)
$x + 6036.02^{\&} 21$	$(21)^+$	<7 ns	D	I^{π} : 160y stretched M1 to (20) ⁺ .
$x + 6469.02^{\&} 21$	$(23)^+$	1.04 //s 7	D	u = 15.42 15
X10109.02 21	(23)	1.01 µ3 /	Ľ	J^{π} : 433 γ , 602.7 γ E2 to (21) ⁺ .
				g-factor=0.701 7 (TDPAD) (1986Po01).
				μ : Differential perturbed angular distribution of γ rays (DPAD)
				(1986Po01,1989Ra17).
x+6525.83 23	$(22)^+$		D	J^{n} : 659.5 γ Ml to (21) ⁺ .
x+6543.4 3	$(21)^{+}$	<25 m-	D	$J^{*}: 0//.1\gamma$ MI to (21)'. $I^{\pi}: 426$ by M1 to (22) ⁺
x + 0093.12.23 x + 7035.0.4	(24^{+}) $(23)^{+}$	<33 NS	ע ת	J . 420.17 W11 10 (23) . I^{π} : 566 92 M1 to (23) ⁺
x+7224.3 4	(23) (23^+)		ם ח	J^{π} : 1358 γ to (21) ⁺ .
$x+7311.02^{\&}23$	$(26)^{-}$	34 ns 2	ے م	$\mu = 18.3322$
	(C 2	~	r

²¹⁰Rn Levels (continued)

Jπ @	$T_{1/2}^{\dagger}$	XREF	Comments
			J^{π} : 842 γ E3 to (23) ⁺ .
			g-factor=0.733 9 (TDPAD) (1986Po01).
			μ : Differential perturbed angular distribution of γ rays (DPAD)
			(1986Po01,1989Ra17).
(24^{+})		D	J^{π} : 293.5 γ to (23) ⁺ .
		D	
(25^{+})		D	J^{π} : 383.4 γ to (23) ⁺ .
(24^{+})		D	J^{π} : 236.1 γ to (23 ⁺).
(27 ⁻)		D	J^{π} : 564.2 γ to (26) ⁻ .
$(26)^{-}$		D	J^{π} : 662.4 γ M1 to (26) ⁻ .
(27^{-})		D	J^{π} : 667.6 γ to (26) ⁻ .
(27-)		D	J^{π} : 284.7 γ to (27 ⁻).
$(29)^{+}$	1.8 ns 2	D	J^{π} : 1245 γ stretched E3 to (26) ⁻ .
			$T_{1/2}$: from 1985Po13.
		D	
(29^{+})		D	J^{π} : 343 γ to (29) ⁺ .
(29^{+})		D	J^{π} : 372.5 γ to (29) ⁺ .
(30^{+})	<0.69 ns	D	J^{π} : 693 γ to (29) ⁺ .
(30^{-})		D	J^{π} : 319.7 γ to (30 ⁺).
(31 ⁻)		D	J^{π} : 166.3 γ to (30 ⁻).
(31^{+})	<0.69 ns	D	J^{π} : 515 γ (M1) to (30 ⁺).
(31+)		D	J^{π} : 315.2 γ to (31 ⁺).
(32 ⁺)	<0.69 ns	D	J^{π} : 322 γ to (31 ⁺).
(34^{+})	<0.69 ns	D	J^{π} : 665.3 γ to (32 ⁺).
(33+)		D	J^{π} : 755.7 γ to (31 ⁺).
(34^{+})		D	J^{π} : 888.6 γ to (32 ⁺).
(35-)		D	J^{π} : 210.5 γ to (34 ⁺).
(36 ⁻)		D	J^{π} : 740.2 γ to (34 ⁺).
(36-)		D	J^{π} : 792.5 γ to (35 ⁻).
(37 ⁻)	<0.69 ns	D	J^{π} : 1273.9 γ E3 to (34 ⁺).
	$\begin{array}{c} \underline{J^{\pi}}^{@} \\ (24^{+}) \\ (25^{+}) \\ (24^{+}) \\ (27^{-}) \\ (26)^{-} \\ (27^{-}) \\ (27^{-}) \\ (29^{+}) \\ (29^{+}) \\ (29^{+}) \\ (30^{+}) \\ (30^{+}) \\ (30^{+}) \\ (30^{+}) \\ (31^{+}) \\ (31^{+}) \\ (31^{+}) \\ (31^{+}) \\ (32^{+}) \\ (34^{+}) \\ (35^{-}) \\ (36^{-}) \\ (37^{-}) \\ (37^{-}) \end{array}$	$\begin{array}{c} \underline{J}^{\pi} @ & \underline{T}_{1/2}^{\dagger} \\ \hline \\ (24^{+}) \\ (25^{+}) \\ (24^{+}) \\ (27^{-}) \\ (26)^{-} \\ (27^{-}) \\ (27^{-}) \\ (29)^{+} & 1.8 \text{ ns } 2 \\ \hline \\ (29^{+}) \\ (29)^{+} \\ (29^{+}) \\ (29)^{+} \\ (29)^$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

[†] From (HI,xn γ).

^{\ddagger} From least-squares fit to γ -ray energies.

[#] $x \approx 45$, based on the excitation energy 1709 keV 30 in ²¹⁴Ra α decay (68.6 μ s) for the x+1664.5 level. See comments in the Adopted Gamma table for x.

^(a) Spin and parity assignments are based on γ -ray multipolarities and $\gamma(\theta)$ measurements in (HI,xn γ), shell model calculations, and systematics of B(E3) values in this mass region (2005Po10, 1982Po03). Specific arguments are given with the individual levels.

& Band(A): yrast sequence.

 $\gamma(^{210}\text{Rn})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α #	Comments
643.90	2+	643.9 <i>1</i>	100	0.0	0^{+}	E2	0.0198	α(K)=0.01440 21; α(L)=0.00409 6; α(M)=0.001021 15
1461.60	(4)+	817.7 <i>1</i>	100	643.90	2+	E2	0.01207	$\alpha(N)=0.000266 \ 4; \ \alpha(O)=5.63\times10^{-5} \ 8; \ \alpha(P)=7.49\times10^{-6} \ 11$ $\alpha(K)=0.00918 \ 13; \ \alpha(L)=0.00218 \ 3; \ \alpha(M)=0.000535 \ 8$ $\alpha(N)=0.0001392 \ 20; \ \alpha(O)=2.98\times10^{-5} \ 5; \ \alpha(P)=4.06\times10^{-6} \ 6$
1545.10	$(4)^{+}$	901.2 <i>1</i>	100	643.90	2+	E2	0.00995	$\alpha(K) = 0.00768 \ 11; \ \alpha(L) = 0.001719 \ 24; \ \alpha(M) = 0.000419 \ 6$ $\alpha(N) = 0.0001090 \ 16; \ \alpha(O) = 2.34 \times 10^{-5} \ 4; \ \alpha(P) = 3.22 \times 10^{-6} \ 5$

γ ⁽²¹⁰Rn) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{@}$	α #	Comments
1664.70	(6)+	119.6 <i>1</i>	7.1 5	1545.10	(4)+	E2		3.88	$\alpha(K)=0.361 5; \alpha(L)=2.60 4; \alpha(M)=0.700 11 \alpha(N)=0.182 3; \alpha(O)=0.0368 6; \alpha(P)=0.00411 6 P(F2)(W,u)=1.58 10 P(F2)(W,u)=1.58$
		203.1 <i>I</i>	100 <i>I</i>	1461.60	(4)+	E2		0.495	$\begin{array}{l} \alpha(K) = 0.1594 \ 23; \ \alpha(L) = 0.248 \ 4; \\ \alpha(M) = 0.0663 \ 10 \\ \alpha(N) = 0.01727 \ 25; \ \alpha(O) = 0.00352 \\ 5; \ \alpha(P) = 0.000405 \ 6 \\ B(F2)(Wu) = 1 \ 58 \ 15 \end{array}$
x+1664.6	(8+)	(x)		1664.70	(6)+				$E_{\gamma}: \gamma \text{ ray not observed. } x ≈ 45$ based on level energy 1709 keV 30 in ²¹⁴ Ra α decay:68.6 μs. Highly converted transition. Other:≤50 in 1979Po19, 1982Po03.
x+2031.60 x+2265.79	(8 ⁺) (9) ⁺	367.0 <i>I</i> 601.2 <i>I</i>	100 100	x+1664.6 x+1664.6	(8 ⁺) (8 ⁺)	M1+E2	-0.20 5	0.0893 <i>19</i>	$\alpha(K)=0.0724 \ 16; \ \alpha(L)=0.01282$ $25; \ \alpha(M)=0.00304 \ 6$ $\alpha(N)=0.000791 \ 15; \ \alpha(O)=0.000173 \ 4; \ \alpha(P)=2 \ 53 \times 10^{-5} \ 5$
x+2376.88	(10)+	111.1 <i>1</i>	2.1 3	x+2265.79	(9)+	M1		9.73	$\alpha(K) = 7.85 \ 12; \ \alpha(L) = 1.434 \ 21; \\ \alpha(M) = 0.341 \ 5 \\ \alpha(N) = 0.0888 \ 13; \ \alpha(O) = 0.0194 \ 3; \\ \alpha(P) = 0.00284 \ 4$
		712.3 1	100.0 <i>3</i>	x+1664.6	(8 ⁺)	E2 [‡]		0.01602	$\alpha(K)=0.01189 \ 17; \ \alpha(L)=0.00311 5; \ \alpha(M)=0.000770 \ 11 \alpha(N)=0.000201 \ 3; \alpha(O)=4.27\times10^{-5} \ 6; \alpha(D)=5 \ 74\times10^{-6} \ 8$
x+2562.31	(11)-	185.5 <i>1</i>	100 5	x+2376.88	(10)+	E1		0.1032	$\begin{array}{l} \text{B(E1)(W.u.)=}3.5\times10^{-7} \ 4\\ \alpha(\text{K)=}0.0826 \ 12; \ \alpha(\text{L})=0.01569\\ 22; \ \alpha(\text{M})=0.00373 \ 6\\ \alpha(\text{N})=0.000962 \ 14;\\ \alpha(\text{O})=0 \ 000204 \ 3; \end{array}$
		897.6 2	23 5	x+1664.6	(8+)	(E3)		0.0249	$\alpha(0) = 0.0020 + 0.00000 + 0.000000000000000000$
x+2922.63	(12)+	360.4 2	0.3 1	x+2562.31	(11)-	E1		0.0220	B(E3)(W.u.)=2.7 6 α (K)=0.0179 3; α (L)=0.00312 5; α (M)=0.000738 11 α (N)=0.000191 3; α (O)=4.10×10 ⁻⁵ 6; α (D)=5.71×10 ⁻⁶ 8
		545.7 1	100 3	x+2376.88	(10)+	E2 [‡]		0.0287	$\alpha(\mathbf{r}) = 5.71 \times 10^{-5} \text{ o}$ $\alpha(\mathbf{K}) = 0.0199 \ 3; \ \alpha(\mathbf{L}) = 0.00661 \ 10; \ \alpha(\mathbf{M}) = 0.001668 \ 24 \ \alpha(\mathbf{N}) = 0.000434 \ 6; \ \alpha(\mathbf{O}) = 9.15 \times 10^{-5} \ 13; \ (\mathbf{D}) = 1.100 \times 10^{-5} \ $
x+3110.05	(12)-	547.7 1	100	x+2562.31	(11)-	M1		0.1177	$\alpha(\mathbf{r}) = 1.189 \times 10^{-5} I/$ $\alpha(\mathbf{K}) = 0.0955 I4; \ \alpha(\mathbf{L}) = 0.01685$ $24; \ \alpha(\mathbf{M}) = 0.00399 \ 6$

γ ⁽²¹⁰Rn) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
								α (N)=0.001039 <i>15</i> ; α (O)=0.000228 <i>4</i> ; α (P)=3.33×10 ⁻⁵ <i>5</i>
x+3248.06	(14)+	325.4 1	100	x+2922.63	(12)+	E2 [‡]	0.1086	B(E2)(W.u.)=0.0248 23 α (K)=0.0578 9; α (L)=0.0378 6; α (M)=0.00987 14 α (N)=0.00257 4; α (O)=0.000531 8;
x+3404.14	(13)-	294.1 <i>1</i>	35 8	x+3110.05	(12)-	M1	0.631	α (P)=6.43×10 ⁻⁵ 9 α (K)=0.511 8; α (L)=0.0914 13; α (M)=0.0217 3
		841.9 <i>1</i>	100 18	x+2562.31	(11)-	E2	0.01139	α (N)=0.00565 8; α (O)=0.001237 18; α (P)=0.000181 3 α (K)=0.00870 13; α (L)=0.00203 3; α (M)=0.000497 7 α (N)=0.0001292 18; α (O)=2.77×10 ⁻⁵ 4;
x+3782.81	(14)-	378.7 1	100 24	x+3404.14	(13)-	M1	0.316	$\alpha(P)=3.79\times10^{-6} 6$ $\alpha(K)=0.256 4; \alpha(L)=0.0457 7; \alpha(M)=0.01083$ 16 $\alpha(N)=0.00282 4; \alpha(O)=0.000617 9;$
			71 10	. 2110.05	(10)			$\alpha(P)=9.02\times10^{-5}$ 13
x+3812.40	(17)-	564.3 <i>1</i>	100	x+3110.03 x+3248.06	(12) $(14)^+$	E3	0.0851	B(E3)(W.u.)=22.1 11 α (K)=0.0454 7; α (L)=0.0294 5; α (M)=0.00775 11 α (N)=0.00203 3; α (O)=0.000423 6; α (P)=5.32×10 ⁻⁵ 8
x+3864.28	(15 ⁻)	460.2 <i>1</i> 616.2 <i>1</i>	10 2 100 <i>1</i> 2	x+3404.14 x+3248.06	(13) ⁻ (14) ⁺	E1	0.00725	$\alpha(\mathbf{x}) = 0.00596 \ 9; \ \alpha(\mathbf{L}) = 0.000982 \ 14;$ $\alpha(\mathbf{M}) = 0.000230 \ 4$ $\alpha(\mathbf{M}) = 0.75 \ 0; \ \alpha(\mathbf{C}) = 1.203 \times 10^{-5} \ 10;$
								$\alpha(\mathbf{N})=3.97\times10^{-6}$ 9, $\alpha(\mathbf{O})=1.293\times10^{-6}$ 19; $\alpha(\mathbf{P})=1.84\times10^{-6}$ 3
x+3920.03 x+4351.70	(15 ⁺) (17 ⁻)	672.0 <i>1</i> 539.3 <i>1</i>	100 100	x+3248.06 x+3812.40	$(14)^+$ $(17)^-$	M1	0.1226	α (K)=0.0995 14; α (L)=0.01756 25; α (M)=0.00416 6 α (N)=0.001083 16; α (O)=0.000237 4;
x+4614.20	(18 ⁻)	801.8 <i>I</i>	100	x+3812.40	(17)-	M1	0.0431	$\begin{array}{l} \alpha(P)=3.47\times10^{-5} \ 5\\ \alpha(K)=0.0351 \ 5; \ \alpha(L)=0.00612 \ 9;\\ \alpha(M)=0.001448 \ 21\\ \alpha(N)=0.000377 \ 6; \ \alpha(O)=8.26\times10^{-5} \ 12; \end{array}$
x + 4720 70	(17-)	270.0.1	100	w + 4251 70	(17-)			$\alpha(P)=1.208\times10^{-5}$ 17
x+4750.70 x+4889.13	(17) (15^+)	969.2 2	55 14	x+4351.70 x+3920.03	(17) (15^+)	M1+E2	0.017 9	$\alpha(K)=0.014 \ 8; \ \alpha(L)=0.0026 \ 12; \ \alpha(M)=0.0006 \ 3$
								$\alpha(N)=0.00016\ 7;\ \alpha(O)=3.5\times10^{-5}\ 16;$
x+4898.94	(16+)	1106.2 <i>2</i> 1035.0 <i>3</i>	100 <i>23</i> 97 <i>19</i>	x+3782.81 x+3864.28	(14) ⁻ (15 ⁻)			$\alpha(P) = 5.0 \times 10^{-5} 25$
		1086.5 2	100 19	x+3812.40	(17)-	E1	0.00254	$\alpha(K)=0.00211 3; \alpha(L)=0.000332 5; \alpha(M)=7.75\times10^{-5} 11 \alpha(N)=2.01\times10^{-5} 3; \alpha(O)=4.38\times10^{-6} 7;$
x+4993.43	(20)+	1181.0 <i>1</i>	100	x+3812.40	(17)-	E3	0.01333	$\alpha(P)=6.33\times10^{-7} \ 9$ B(E3)(W.u.)=11.6 9 $\alpha(K)=0.00989 \ 14; \ \alpha(L)=0.00259 \ 4; \alpha(M)=0.000643 \ 9$ $\alpha(N)=0.0001678 \ 24; \ \alpha(O)=3.60\times10^{-5} \ 5; \alpha(P)=4.94\times10^{-6} \ 7; \ \alpha(IPF)=6.95\times10^{-7} \ 10$

γ ⁽²¹⁰Rn) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α #	Comments
x+5046.41 x+5056.20	(17 ⁺) (18 ⁻)	133.0 2 325.5 <i>1</i>	100 100	x+4913.72 x+4730.70	(17^+) (17^-)	M1	0.478	$\alpha(K)=0.387\ 6;\ \alpha(L)=0.0691\ 10;$ $\alpha(M)=0.01640\ 23$
x+5162.8	(19-)	54862	100	x+4614 20	(18^{-})			$\alpha(N)=0.00427$ 6; $\alpha(O)=0.000935$ 14; $\alpha(P)=0.0001366$ 20
x+5170.8	(19 ⁻)	1358.4 2	100 10	x+3812.40	$(10^{-})^{-}$	E2	0.00459	α (K)=0.00366 6; α (L)=0.000686 10; α (M)=0.0001638 23
								α (N)=4.26×10 ⁻⁵ 6; α (O)=9.23×10 ⁻⁶ 13; α (P)=1.313×10 ⁻⁶ 10; α (IPE)=2.40×10 ⁻⁵ 4
x+5253.87	(17 ⁺)	355.0 1	100	x+4898.94	(16 ⁺)	M1	0.377	$\alpha({\rm I})$ =1.515×10 13, $\alpha({\rm III})$ =2.49×10 4 $\alpha({\rm K})$ =0.306 5; $\alpha({\rm L})$ =0.0545 8; $\alpha({\rm M})$ =0.01292 19
								α (N)=0.00337 5; α (O)=0.000737 11; α (P)=0.0001076 15
x+5380.99	(18 ⁺)	127.4 2	16 4	x+5253.87	(17 ⁺)	M1	6.59	$\alpha(K) = 5.32 \ 8; \ \alpha(L) = 0.967 \ 15; \ \alpha(M) = 0.230 \ 4$ $\alpha(N) = 0.0599 \ 9; \ \alpha(O) = 0.01311 \ 20; \ \alpha(P) = 0.01011 \ 3$
		467.2 1	100 20	x+4913.72	(17 ⁺)			
x+5383.87	(19 ⁺)	482.0 <i>I</i> 390.4 <i>I</i>	52 8 100	x+4898.94 x+4993.43	(16^+) $(20)^+$	(M1)	0.291	α(K)=0.236 4; α(L)=0.0420 6; α(M)=0.00996
								14 $\alpha(N)=0.00260.4$; $\alpha(O)=0.000568.8$;
								$\alpha(P)=8.30\times10^{-5}$ 12
x+5684.64	(19 ⁺)	303.6 1	100 4	x+5380.99	(18 ⁺)	M1+E2	0.36 23	$\begin{array}{l} \alpha(\text{K}) = 0.27 \ 20; \ \alpha(\text{L}) = 0.066 \ 18; \ \alpha(\text{M}) = 0.016 \ 4 \\ \alpha(\text{N}) = 0.0043 \ 10; \ \alpha(\text{O}) = 0.00091 \ 23; \\ \alpha(\text{P}) = 0.00012 \ 5 \end{array}$
x+5861.0	(20^{-})	638.3 <i>1</i> 690 2 2	24 <i>3</i> 100	x+5046.41 x+5170.8	(17^+) (19^-)	(M1)	0.0639	$\alpha(K) = 0.0519.8; \alpha(I) = 0.00910.13;$
X15001.0	(20)	070.2 2	100	X10170.0	(1))	(111)	0.0057	$\alpha(\mathbf{M}) = 0.00215 \ 3$
								$\alpha(N)=0.000561 \ 8; \ \alpha(O)=0.0001228 \ 78; \ \alpha(P)=1.80\times10^{-5} \ 3$
								I_{γ} : weak transition and no intensity is given in (HLXNG)
x+5866.33	(21)+	872.9 <i>1</i>	100	x+4993.43	$(20)^{+}$	M1	0.0346	$\alpha(K) = 0.0281 4; \alpha(L) = 0.00490 7;$
								$\alpha(M) = 0.001137 T/$ $\alpha(N) = 0.000301 5; \alpha(O) = 6.60 \times 10^{-5} 10;$
x+5876.31	$(20)^{+}$	191.7 <i>1</i>	47 10	x+5684.64	(19 ⁺)	M1	2.07	α (P)=9.66×10 ⁻⁶ <i>14</i> α (K)=1.675 <i>24</i> ; α (L)=0.302 <i>5</i> ; α (M)=0.0718
	(==)				()			$\begin{array}{c} 11\\ \alpha(D)=0.0187 \ 2; \ \alpha(O)=0.00400 \ 6; \end{array}$
								$\alpha(\mathbf{N})=0.0187, 3; \alpha(\mathbf{O})=0.00409, 0;$ $\alpha(\mathbf{P})=0.000598, 9$
		492.4 <i>1</i>	57 7	x+5383.87	(19+)	M1+E2	0.10 6	$\alpha(K)=0.08 \ 6; \ \alpha(L)=0.016 \ 7; \ \alpha(M)=0.0038 \ 15 \ \alpha(N)=0.0010 \ 4; \ \alpha(O)=0.00021 \ 9; \ \alpha(D)=2.0\times10^{-5} \ 14$
		882.9 2	100 9	x+4993.43	(20)+	M1	0.0336	$\alpha(F) = 5.0 \times 10^{-14}$ $\alpha(K) = 0.0273 \ 4; \ \alpha(L) = 0.00475 \ 7;$
								$\alpha(M)=0.001123\ 16$ $\alpha(N)=0.000292\ 4;\ \alpha(O)=6.40\times10^{-5}\ 9;$ $\alpha(P)=9\ 37\times10^{-6}\ 14$
x+6036.02	(21)+	159.7 <i>1</i>	100	x+5876.31	(20)+	M1 [‡]	3.47	$\alpha(K) = 2.80 4; \ \alpha(L) = 0.507 8; \ \alpha(M) = 0.1204 \ 17$
								α (N)=0.0314 5; α (O)=0.00687 10; α (P)=0.001003 15
x+6469.02	(23)+	433.0 1	100 7	x+6036.02	(21)+	E2 [‡]	0.0501	α (K)=0.0316 5; α (L)=0.01376 20; α (M)=0.00353 5

γ ⁽²¹⁰Rn) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
x+6469.02	(23)+	602.7 <i>1</i>	8 <i>I</i>	x+5866.33	(21) ⁺	E2	0.0229	$\alpha(N)=0.000920 \ 13; \ \alpha(O)=0.000192 \ 3; \alpha(P)=2.42\times10^{-5} \ 4 B(E2)(W.u.)=0.00043 \ 5 \alpha(K)=0.01635 \ 23; \ \alpha(L)=0.00494 \ 7; \alpha(M)=0.001237 \ 18 \alpha(N)=0.000322 \ 5; \ \alpha(O)=6.81\times10^{-5} \ 10;$
x+6525.83	(22)+	659.5 <i>1</i>	100	x+5866.33	(21)+	M1	0.0720	$\alpha(P)=8.97\times10^{-6} I3$ B(E2)(W.u.)=6.5×10 ⁻⁶ I1 $\alpha(K)=0.0585 9; \alpha(L)=0.01027 I5;$ $\alpha(M)=0.00243 4$ $\alpha(N)=0.000633 9; \alpha(O)=0.0001385 20;$
x+6543.4	(21)+	677.1 2	100	x+5866.33	(21)+	M1	0.0672	$\alpha(P)=2.03\times10^{-5} 3$ $\alpha(K)=0.0546 8; \alpha(L)=0.00958 14;$ $\alpha(M)=0.00227 4$ $\alpha(N)=0.000590 9; \alpha(O)=0.0001292 19;$
x+6895.12	(24+)	426.1 <i>1</i>	100	x+6469.02	(23)+	M1	0.230	$\alpha(P)=1.89\times10^{-5} 3$ $\alpha(K)=0.187 3; \alpha(L)=0.0331 5;$ $\alpha(M)=0.00785 11$ $\alpha(N)=0.00205 3; \alpha(O)=0.000448 7;$ $\alpha(P)=6.54\times10^{-5} 10$
x+7035.9	(23)+	566.9 <i>3</i>	100	x+6469.02	(23) ⁺	M1	0.1074	$\alpha(\mathbf{F}) = 0.34 \times 10^{-10} 10^{-10}$ $\alpha(\mathbf{K}) = 0.0872 13; \alpha(\mathbf{L}) = 0.01537 22;$ $\alpha(\mathbf{M}) = 0.00364 6^{-10}$ $\alpha(\mathbf{N}) = 0.000948 14; \alpha(\mathbf{O}) = 0.000207 3;$ $\alpha(\mathbf{P}) = 3.03 \times 10^{-5} 5$
x+7224.3	(23^{+})	1358.0 <i>3</i>	100	x+5866.33	$(21)^{+}$			
x+7311.02	$(26)^{-}$	415.9 <i>1</i>	10 <i>1</i>	x+6895.12	(24^{+})	‡		
		842.0 <i>I</i>	100 13	x+6469.02	(23)+	E3 [‡]	0.0291	α (K)=0.0196 3; α (L)=0.00709 10; α (M)=0.00181 3 α (N)=0.000473 7; α (O)=0.0001001 14; α (P)=1.324×10 ⁻⁵ 19 B(E3)(W.u.)=40 8
x+7329.4 x+7379.8 x+7419.3 x+7460.4 x+7875_13	(24^+) (25^+) (24^+) (27^-)	293.5 2 854.0 2 383.4 <i>I</i> 236.1 2 564.2 <i>I</i>	100 100 100 100	x+7035.9 x+6525.83 x+7035.9 x+7224.3 x+7311.02	$(23)^+$ $(22)^+$ $(23)^+$ (23^+) $(26)^-$			
x+7973.4	(27) $(26)^{-}$	662.4 2	100	x+7311.02 x+7311.02	(26) ⁻	M1	0.0712	α (K)=0.0579 9; α (L)=0.01015 15; α (M)=0.00240 4 α (N)=0.000625 9; α (O)=0.0001369 20; α (P)=2.00×10 ⁻⁵ 3
x+7978.6	(27 ⁻)	667.6 <i>3</i>	100	x+7311.02	$(26)^{-}$			
x+8263.3	(27^{-})	284.7 2	100	x+7978.6	(27^{-})			
x+8556.13	(29)	681.4 Z	16.4	x+/8/5.13	(27)	To [†]	0.01100	
		1245.0 <i>1</i>	100 9	x+7311.02	(26)	E3 [∓]	0.01189	$\alpha(K)=0.00891 13; \alpha(L)=0.00225 4; \alpha(M)=0.000555 8 \alpha(N)=0.0001448 21; \alpha(O)=3.11\times10^{-5} 5; \alpha(P)=4.29\times10^{-6} 6; \alpha(IPF)=2.71\times10^{-6} 4 B(E3)(W.u.)=47 8$
x+8887.4		914.0 8	100	x+7973.4	(26)-			
x+8899.1	(29^+)	343.0 2	100	x+8556.13	$(29)^+$			
x+8928.6 x+9249.6	(29^{+}) (30^{+})	372.5 2 693 5 1	100	x+8556.13 x+8556.13	$(29)^{+}$ $(29)^{+}$	M1+F2	0.040.23	$\alpha(K) = 0.032.20; \alpha(L) = 0.006.3; \alpha(M) = 0.0015$
AT 7277.0	(30)	075.5 1	100	A+0330.13	(27)	1911 7122	0.040 23	7
								α (N)=0.00038 <i>17</i> ; α (O)=8.E-5 <i>4</i> ; α (P)=1.2×10 ⁻⁵ <i>6</i>

$\gamma(^{210}\text{Rn})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	α [#]	Comments
x+9569.3	(30^{-})	319.7 <i>1</i>	100	x+9249.6 (30 ⁺)			
x+9735.6	(31^{-})	166.3 2	100	x+9569.3 (30 ⁻)			
x+9764.7	(31 ⁺)	515.1 <i>1</i>	100	x+9249.6 (30 ⁺)	M1	0.1385	α (K)=0.1124 <i>16</i> ; α (L)=0.0199 <i>3</i> ; α (M)=0.00470 <i>7</i> α (N)=0.001226 <i>18</i> ; α (O)=0.000268 <i>4</i> ; α (P)=3.92×10 ⁻⁵ <i>6</i>
x+10079.9	(31^{+})	315.2 <i>I</i>	100	x+9764.7 (31 ⁺)			
x+10086.8	(32^{+})	322.1 <i>I</i>	100	x+9764.7 (31 ⁺)			
x+10752.1	(34^{+})	665.3 2	100	x+10086.8 (32 ⁺)			
x+10835.6	(33^{+})	755.7 5	100	x+10079.9 (31 ⁺)			
x+10975.4	(34^{+})	888.6 2	100	x+10086.8 (32 ⁺)			
x+11185.9	(35 ⁻)	210.5 2	100	x+10975.4 (34 ⁺)			
x+11492.3	(36 ⁻)	740.2 5	100	x+10752.1 (34 ⁺)			
x+11978.4	(36 ⁻)	792.5 5	100	x+11185.9 (35 ⁻)			
x+12026.0	(37-)	1273.9 2	100	x+10752.1 (34 ⁺)	E3	0.01132	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00851 \ 12; \ \alpha(\mathrm{L}) = 0.00211 \ 3; \\ \alpha(\mathrm{M}) = 0.000521 \ 8 \\ \alpha(\mathrm{N}) = 0.0001359 \ 19; \ \alpha(\mathrm{O}) = 2.92 \times 10^{-5} \ 4; \\ \alpha(\mathrm{P}) = 4.03 \times 10^{-6} \ 6; \ \alpha(\mathrm{IPF}) = 4.07 \times 10^{-6} \ 6 \end{array}$

[†] From (HI,xnγ). Multipolarities are based on measured α(K)exp, α(L)exp, α(M)exp, etc.
[‡] Stretched transition, from γ(θ) (1982Po03).
[#] Additional information 2.
[@] If No value given it was assumed δ=1.00 for E2/M1, δ=1.00 for E3/M2 and δ=0.10 for the other multipolarities.

Level Scheme

Intensities: Relative photon branching from each level

²¹⁰₈₆Rn₁₂₄

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

.

_ _

γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

1002 100 00 100 001 IN . $\frac{(15^+)}{(17^-)}$ x+4889.13 x+4730.70 2 $\mathbf{t} = \begin{bmatrix} \mathbf{t} & \mathbf{t} \\ \mathbf{t} & \mathbf{t} \\ \mathbf{t}$ (18-) -530 | 5.65 x+4614.20 (B) 4 62'0 , (17⁻) x+4351.70 6 (15⁺) ~ ž x+3920.03 <5.5 ns $\frac{(15^-)}{(17)^-}$ <8 ns 1.06 µs 5 x+3864.28 33.4 25.1001 x+3812.40 001 IN 1.302 Ň 16.180 (14) x+3782.81 (13) S x+3404.14 6 <5.5 ns $(14)^+$ x+3248.06 76 ns 7 * * s in $\frac{(11)}{(12)^{-1}}$ ${}^{l_{0}}_{23} {}^{(e_{3})}_{23} {}^{(e_{3})}$ x+3110.05 <5.5 ns Ş 4 601 | 4 601 | 1 414 € 1 x+2922.63 <1.4 ns 19.69 (11)x+2562.31 64 ns *3* $\frac{(10)^+}{(9)^+}$ 8 x+2376.88 <1.4 ns 36% | x+2265.79 <21 ns (8+) x+2031.60 -9° (8+) 4 x+1664.6 644 ns 40 $\frac{(6)^+}{(4)^+}$ 1664.70 S 7.6 ns 7 ¥ 1545.10 1461.60 + 643.9 E2100 643.90 2^{+} 0^+ 0.0 2.4 h *l*

 $^{210}_{86}$ Rn $_{124}$

Ban	d(A): Yras	st sequence
(37-)		x+12026.0
	1274	
	12/4	
(34+)		x+10752.1
(32+)	005	x+10086.8
(31+)	322	x+9764.7
	515	
(30+)		x+9249.6
	694	
(29) ⁺		x+8556.13
		•
	1245	
	1245	
(26)-		x+7311.02
		•
	842	
(23)+	_	x+6469.02
(21) ⁺	433	x+6036 02
(20)+	160	
	883	
(20)+	-	x+4993.43
	1181	
(17)-		2012 40
(17)	-	x+3812.40
(14)+	564	x+3248.06
(12)+	325	x+2922.63
		x12/22.05
(10) ⁺	546	x+2376.88
		•
(8 ⁺)	712	x+1664.6
$\overline{(6)^+}$	= 1	1664.70
(4)		1461.60
	818	
2+		643.90
	644	
0+		0.0

 $^{210}_{86} Rn_{124}$