²¹⁰At ε decay (8.1 h) 1972Ja12

History

TypeAuthorCitationLiterature Cutoff DateFull EvaluationM. Shamsuzzoha BasuniaNDS 121, 561 (2014)31-Mar-2014

Parent: ²¹⁰At: E=0.0; $J^{\pi}=(5)^+$; $T_{1/2}=8.1$ h 4; $Q(\varepsilon)=3981$ 8; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=99.825 20 1972Ja12: Measured E γ and I γ by Ge(Li) detector and conversion electron by Si(Li) detector.

²¹⁰Po Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	0^{+}	138.376 d 2	
1181.4 <i>I</i>	2+	5.9 ps 12	
1426.7 <i>1</i>	4+	1.56 ns 6	T _{1/2} : Other values: 1.53 ns 8 (1973Be30), 1.8 ns 2 (1963Fu02), 1.60 ns 6 (1973Na21) via 210 At ε decay.
1473.2 <i>1</i>	6+	42.6 ns 10	
1556.8 <i>1</i>	8+	98.9 ns 25	
2187.6 2	8+		
2290.2? 2	2+		
2326.0 2	6+		
2382.4 1	4+		
2386.8 1	3-	≈0.3 ps	
2403.1 <i>1</i>	5+		Branching: $I_{\gamma}(930\gamma)/I_{\gamma}(976\gamma)=0.94$ 6 (1972Ja12), 0.90 (1971Fa18) via (α ,2n γ).
2438.1 2	7+		Branching: $I\gamma(965\gamma)/I\gamma(881\gamma)/I\gamma(250\gamma)=73$ 19/100/95 21 (1972Ja12), 33/100/83 (1971Fa18) via (α ,2n γ).
2910.0 [#] 1	5-		Branching: $I_{\gamma}(1437\gamma)/I_{\gamma}(1483\gamma)=0.62$ 4 (1972Ja12), 0.60 (1971Fa18) via (α ,2n γ).
3016.7? 3	(7) ⁻		
3026.2 [#] 1	5-		
3075.1? 2	$(4)^{-}$		
3111.5 2	4-		
3124.7? 2	(6)-		
3428.3 1	5-		
3525.2 2	6-		
3699.3 2	5-		
3711.2? 3	(5 ⁻)		
3727.2 1	(6)-		
3779.4 2	$(4,5)^{-}$		

 † Deduced by evaluator from a least-squares fit to $\gamma\text{-ray energies}.$

[‡] From Adopted Levels, except otherwise noted.

[#] Configuration= $((\pi \ 1h_{9/2}) \ (\pi \ 1i_{13/2}))$ mixed with Configuration= $((208\pi B5^{-}) \ (\pi \ 1h_{9/2}0))$. And the split in (α,t) strengths between the 5⁻ levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^\ddagger$			Comments		
(202 8) (254 8)	3779.4 3727.2	0.31 2 5.4 <i>1</i>	6.9 <i>1</i> 5.9 <i>1</i>	0.31 2 5.4 <i>1</i>	εK= εK= εK/ε e	0.58 11; εL= 0.65 9; εL= exp=0.45 9 (1963)	0.31 4; ε M+= 0.257 23; ε M+= Sc15) scin.	0.116 <i>12</i> 0.095 8	
(270 [#] 8) (282 8) (456 8) (553 8)	3711.2? 3699.3 3525.2 3428.3	0.037 <i>3</i> 0.39 <i>1</i> 0.5 <i>1</i> 2.2 <i>1</i>	8.1 <i>1</i> 7.2 <i>1</i> 7.6 <i>1</i> 7.14 5	0.037 <i>3</i> 0.39 <i>1</i> 0.5 <i>1</i> 2.2 <i>1</i>	εK= εK= εK= εK=	0.66 8; ε L= 0.67 8; ε L= 0.74 4; ε L= 0.75 4; ε L=	0.247 21; ɛM+= 0.241 19; ɛM+= 0.196 10; ɛM+= 0.185 8; ɛM+=	$\begin{array}{c} 0.090 \ 7 \\ 0.088 \ 7 \\ 0.069 \ 3 \\ 0.0642 \ 25 \end{array}$	
(856 [#] 8)	3124.7?	< 0.08	>9.0	< 0.08	$\varepsilon K=$	0.773 22; εL=	0.169 4; <i>ε</i> M+=	0.0577 15	

Continued on next page (footnotes at end of table)

²¹⁰ At ε decay (8.1 h)	1972Ja12 (continued)
-----------------------------------	----------------------

E(decay)	E(level)	Iβ ⁺ ‡	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(870 [#] 8)	3111.5		< 0.04	>9.3	< 0.04	ε K= 0.774 22; ε L= 0.169 4; ε M+= 0.0576 14
(906 8)	3075.1?		0.072 8	9.1 <i>1</i>	0.072 8	$\varepsilon K = 0.775 \ 21; \ \varepsilon L = 0.168 \ 4; \ \varepsilon M + = 0.0571 \ 14$
(955 8)	3026.2		19 <i>1</i>	6.73 4	19 <i>1</i>	$\varepsilon K = 0.777 \ 20; \ \varepsilon L = 0.166 \ 4; \ \varepsilon M + = 0.0566 \ 13$
(964 [#] 8)	3016.7?		< 0.04	>9.4	< 0.04	ε K= 0.777 <i>19</i> ; ε L= 0.166 <i>4</i> ; ε M+= 0.0565 <i>13</i>
(1071 8)	2910.0	2.38×10 ⁻⁷ 10	70 <i>3</i>	6.27 4	70 <i>3</i>	av E β = 32 6; ε K= 0.781 17; ε L= 0.164 3; ε M+= 0.0556 11
(1578 8)	2403.1	<8×10 ⁻⁵	<0.1	>9.4	< 0.1	av $E\beta$ = 276 5; ε K= 0.789 12; ε L= 0.1574 22; ε M+= 0.0530 7
(1599 8)	2382.4	2.8×10 ⁻⁴ 10	0.3 1	9.0 2	0.3 1	av $E\beta$ = 285 5; ε K= 0.789 11; ε L= 0.1572 22; ε M+= 0.0529 7
(1655 8)	2326.0	8.1×10 ⁻⁴ 8	0.59 6	8.75 6	0.59 6	av $E\beta$ = 310 5; ε K= 0.789 11; ε L= 0.1567 21; ε M+= 0.0527 7
(2508 [#] 8)	1473.2	<0.09	<2.9	>8.4	<3	av $E\beta = 6845; \epsilon K = 0.7737; \epsilon L = 0.148413; \epsilon M + = 0.04964$

ϵ, β^+ radiations (continued)

[†] Deduced by evaluator from I(γ+ce) balance at each level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

Iγ normalization: from decay scheme using Σ I(γ+ce) (g.s.)=99.825% 20. α (K)exp=ce(K)/Iγ normalized to α (K)(1181γ,E2)=0.0043 (theory). I(ce) intensities are normalized to I(ce(K), 1181γ)=0.43. I(ce): 1954Mi70, 1958Ho71, 1968Pr03, 1972Ja12. ceγ-,γγ-coin: 1954Mi70, 1958Ho71, 1963Sc15, 1972Ja12. γγ(t): 1963Fu02, 1972Ja12, 1973Na21, 1973Be30, 1976Ha56. γγ(θ): 1954Mi70, 1963Sc15. Auger electrons: 1982Ba67, 1986Ba60.

No γ^{\pm} (<5%) scin (1953Ho49).

 $\boldsymbol{\omega}$

Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [†]	α^{\ddagger}	Comments
46.48 5	0.13	1473.2	6+	1426.7	4+	E2	269	$\alpha(L)=200 \ 3; \ \alpha(M)=53.1 \ 8$ $\alpha(N)=13.57 \ 21; \ \alpha(O)=2.57 \ 4; \ \alpha(P)=0.225 \ 4$ $E_{\gamma}: \ from \ 1958Ho71. \ Others: \ 46.4 \ 3 \ (1968Pr03), \ 46.6 \ 2 \ (1972Ja12).$ $I_{\gamma}: \ from \ I(ce(L) \ 46\gamma)=26.3 \ (1958Ho71), \ \alpha(L)(E2)=200. \ Other: \ 0.110 \ 16 \ (1968Pr03)$ semi. $I_{\gamma}: \ I_{\gamma}: \ I_$
77.2 2	≈0.027	2403.1	5+	2326.0	6+	M1	4.47 8	$\alpha(L)=3.41 6; \ \alpha(M)=0.805 \ 13$ $\alpha(N)=0.207 \ 4; \ \alpha(O)=0.0434 \ 7; \ \alpha(P)=0.00560 \ 9$ $E_{\gamma}: \text{ from E(ce L1)=60.2 (1972Ja12). Other: 77.20 (1976BaYH).}$ $I_{\gamma}: \text{ from Ti}(77\gamma)\approx0.15 (1972Ja12), 0.16 \ 4 (1976BaYH).$ $L1/I_{2}/M=100 \ I/(14 \ 3/29 \ 7 (1976BaYH).$
83.54 8	0.031 2	1556.8	8+	1473.2	6+	E2	15.97	$\alpha(L)=11.83 \ 18; \ \alpha(M)=3.16 \ 5$ $\alpha(N)=0.809 \ 12; \ \alpha(O)=0.1535 \ 23; \ \alpha(P)=0.01364 \ 20$ $E_{\gamma}: \text{ from 1976BaYH. Others: } 83.44 \ 8 \ (1958Ho71), \ 83.67 \ (1970BeZQ).$ $I_{\gamma}: \text{ from Ti}(83\gamma)=\text{Ti}(631\gamma+881\gamma) \text{ for level intensity balance.}$ $1.2(I_{3}=1.24 \ (1954Mi70): \ 1.1/2 \ 2/I_{3}=4 \ 1/131 \ 1/0/100 \ 6 \ (1976BaYH)$
92.1 2	0.0011 3	2382.4	4+	2290.2?	2+	(E2)	10.07 18	$\alpha(L)=7.46\ 13;\ \alpha(M)=1.99\ 4$ $\alpha(N)=0.510\ 9;\ \alpha(O)=0.0969\ 17;\ \alpha(P)=0.00865\ 15$ $I_{\gamma}:\ from\ Ti(92\gamma)=Ti(2290\gamma)\ for\ level\ intensity\ balance.$ I(ce) L.2.L3 lines predominant (1958Ho71).
112.2 3	≈0.03	2438.1	7+	2326.0	6+	(M1)	7.99 13	$\alpha(K) = 6.48 \ II; \ \alpha(L) = 1.154 \ I9; \ \alpha(M) = 0.272 \ 5 \ \alpha(N) = 0.0702 \ I2; \ \alpha(O) = 0.01468 \ 24; \ \alpha(P) = 0.00190 \ 3 \ E_{\gamma}: \ from \ E(ce(L1)) = 95.27 \ keV \ (1958Ho71). \ L_{\gamma}: \ from \ Ti(112\gamma) \approx 0.27 \ (1972Ja12) \ and \ \alpha = 8.4.$
116.2 <i>I</i>	0.65 6	3026.2	5-	2910.0	5-	M1	7.23	$\alpha'(K)=5.87$ 9; $\alpha(L)=1.043$ 15; $\alpha(M)=0.246$ 4 $\alpha(N)=0.0634$ 9; $\alpha(O)=0.01327$ 19; $\alpha(P)=0.001714$ 25 E _y : other: 116.1 <i>I</i> (1958Ho71). $\alpha(L)\exp=1.22$ 14, $\alpha(M)\exp=0.30$ 4. K/L=5.8 (1958Ho71), L1/L2=9 (1954Mi70).
201.8 2	0.15 2	3727.2	(6) ⁻	3525.2	6-	M1	1.516	$\alpha(K)=1.231 \ 18; \ \alpha(L)=0.217 \ 3; \ \alpha(M)=0.0511 \ 8$

	210 At ε decay (8.1 h)							1972Ja12 (continued)	
							continued)		
Eγ	Ι _γ @	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	$\delta^{\dagger \#}$	α^{\ddagger}	Comments
245.3 1	80 4	1426.7	4+	1181.4	2+	E2		0.236	$\begin{aligned} \alpha(N) = 0.01316 \ 19; \ \alpha(O) = 0.00275 \ 4; \ \alpha(P) = 0.000356 \ 5 \\ \alpha(K) \exp = 1.24 \ 11, \ \alpha(L) \exp = 0.22 \ 2. \\ \alpha(K) = 0.1057 \ 15; \ \alpha(L) = 0.0971 \ 14; \ \alpha(M) = 0.0255 \ 4 \\ \alpha(N) = 0.00654 \ 10; \ \alpha(O) = 0.001265 \ 18; \ \alpha(P) = 0.0001225 \ 18 \\ A_2(245\gamma) \ (1181\gamma)(\theta) = 0.092 \ 22 \ (1963sc15) \ scin. \\ \alpha(K) \exp = 0.110 \ 13 \ \alpha(L) \exp = 0.102 \ 18 \\ \end{aligned}$
250.5 2	0.21 4	2438.1	7+	2187.6	8+	M1		0.830	$\alpha(\mathbf{K}) \approx p = 0.110$ 13, $\alpha(\mathbf{E}) \approx p = 0.102$ 10. $\mathbf{L} 1 + \mathbf{L} 2 / \mathbf{L} 3 = 2.32$ 24 (1972Ja12), 2.1 (1954Mi70). $\alpha(\mathbf{K}) = 0.675$ 10; $\alpha(\mathbf{L}) = 0.1184$ 17; $\alpha(\mathbf{M}) = 0.0279$ 4 $\alpha(\mathbf{N}) = 0.00719$ 11; $\alpha(\mathbf{O}) = 0.001504$ 22; $\alpha(\mathbf{P}) = 0.000194$ 3 $\alpha(\mathbf{K}) \approx p = 0.70$ 14
298.8 2	0.11 2	3727.2	(6)-	3428.3	5-	M1		0.511	$\alpha(\mathbf{K})\exp=0.70\ 14.$ $\alpha(\mathbf{K})=0.416\ 6;\ \alpha(\mathbf{L})=0.0727\ 11;\ \alpha(\mathbf{M})=0.01713\ 25$ $\alpha(\mathbf{N})=0.00441\ 7;\ \alpha(\mathbf{O})=0.000923\ 13;\ \alpha(\mathbf{P})=0.0001192\ 17$
316.8 2	0.17 <i>1</i>	3428.3	5-	3111.5	4-	M1		0.435	α (K)exp=0.44 4, α (L)exp=0.08 1. α (K)=0.354 5; α (L)=0.0619 9; α (M)=0.01458 21 α (N)=0.00375 6; α (O)=0.000785 11; α (P)=0.0001015 15 α (K)=0.21 7; α (D)=0.000785 12; α (P)=0.0001015 15
x334.3 2 402.0 2	0.05 <i>1</i> 0.78 <i>2</i>	3428.3	5-	3026.2	5-	M1		0.228	α (K)=0.186 3; α (L)=0.0323 5; α (M)=0.00760 11 α (N)=0.00196 3; α (O)=0.000410 6; α (P)=5.30×10 ⁻⁵ 8
498.9 2	0.15 <i>1</i>	3525.2	6-	3026.2	5-	M1		0.1282	α (K)exp=0.212 <i>15</i> , α (L)exp=0.037 <i>4</i> . α (K)=0.1045 <i>15</i> ; α (L)=0.0180 <i>3</i> ; α (M)=0.00424 <i>6</i> α (N)=0.001092 <i>16</i> ; α (O)=0.000229 <i>4</i> ; α (P)=2.96×10 ⁻⁵ <i>5</i>
506.8 2	0.69 2	2910.0	5-	2403.1	5+	E1		0.00998	α (K)exp=0.110 <i>10</i> . α (K)=0.00822 <i>12</i> ; α (L)=0.001349 <i>19</i> ; α (M)=0.000315 <i>5</i> α (N)=8.06×10 ⁻⁵ <i>12</i> ; α (O)=1.664×10 ⁻⁵ <i>24</i> ; α (P)=2.07×10 ⁻⁶ <i>3</i>
518.3 2	0.15 <i>1</i>	3428.3	5-	2910.0	5-	M1		0.1158	α (K)exp=0.0092 <i>12</i> . α (K)=0.0945 <i>14</i> ; α (L)=0.01628 <i>23</i> ; α (M)=0.00383 <i>6</i> α (N)=0.000986 <i>14</i> ; α (O)=0.000206 <i>3</i> ; α (P)=2.67×10 ⁻⁵ <i>4</i> (K)=0.007 <i>H</i>
527.6 1	1.15 4	2910.0	5-	2382.4	4+	E1		0.00919	$\alpha(K) \exp[=0.107 \ II.$ $\alpha(K) = 0.00758 \ II; \ \alpha(L) = 0.001238 \ I8; \ \alpha(M) = 0.000289 \ 4$ $\alpha(N) = 7.40 \times 10^{-5} \ II; \ \alpha(O) = 1.528 \times 10^{-5} \ 22; \ \alpha(P) = 1.90 \times 10^{-6} \ 3$
584.0 2	0.34 2	2910.0	5-	2326.0	6+	E1		0.00749	$\begin{array}{l} \alpha(\text{K}) \exp = 0.0083 \ 8. \\ \alpha(\text{K}) = 0.00618 \ 9; \ \alpha(\text{L}) = 0.001001 \ 14; \ \alpha(\text{M}) = 0.000234 \ 4 \\ \alpha(\text{N}) = 5.98 \times 10^{-5} \ 9; \ \alpha(\text{O}) = 1.236 \times 10^{-5} \ 18; \ \alpha(\text{P}) = 1.548 \times 10^{-6} \ 22 \end{array}$
602.5 2	0.12 2	3727.2	(6)-	3124.7?	(6) ⁻	M1		0.0778	α (K)exp=0.0070 <i>11</i> . α (K)=0.0635 <i>9</i> ; α (L)=0.01090 <i>16</i> ; α (M)=0.00256 <i>4</i> α (N)=0.000660 <i>10</i> ; α (O)=0.0001381 <i>20</i> ; α (P)=1.79×10 ⁻⁵ <i>3</i>
615.3 2	0.36 2	3525.2	6-	2910.0	5-	M1+E2	1.1 2	0.044 6	α (K)exp=0.080 <i>12</i> . α (K)=0.035 <i>5</i> ; α (L)=0.0069 <i>7</i> ; α (M)=0.00165 <i>15</i> α (N)=0.0042 <i>4</i> ; α (O)=8.7×10 ⁻⁵ <i>8</i> ; α (P)=1.09×10 ⁻⁵ <i>12</i>
623.0 2	0.43 2	3026.2	5-	2403.1	5+	E1		0.00659	α (K)exp=0.059 5. α (K)=0.00544 8; α (L)=0.000877 13; α (M)=0.000204 3

4

L

	$\frac{210}{\text{At }\varepsilon} \text{ decay (8.1 h)} \qquad 1972 \text{Ja12 (continued)}$													
	γ ⁽²¹⁰ Po) (continued)													
E_{γ}	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	$\delta^{\dagger \#}$	α^{\ddagger}	Comments						
630.9 2	0.31 2	2187.6	8+	1556.8 8+	M1+E2	0.52 5	0.0583 19	$\begin{aligned} &\alpha(\text{N}) = 5.23 \times 10^{-5} \ 8; \ \alpha(\text{O}) = 1.083 \times 10^{-5} \ 16; \ \alpha(\text{P}) = 1.359 \times 10^{-6} \ 19 \\ &\alpha(\text{K}) = 0.0064 \ 11. \\ &\alpha(\text{K}) = 0.0473 \ 16; \ \alpha(\text{L}) = 0.00840 \ 23; \ \alpha(\text{M}) = 0.00198 \ 6 \\ &\alpha(\text{N}) = 0.000510 \ 14; \ \alpha(\text{O}) = 0.000106 \ 3; \ \alpha(\text{P}) = 1.36 \times 10^{-5} \ 4 \end{aligned}$						
639.4 2	0.26 2	3026.2	5-	2386.8 3-	E2		0.0183	α (K)exp=0.057 5. α (K)=0.01353 19; α (L)=0.00363 5; α (M)=0.000897 13 α (N)=0.000230 4; α (O)=4.65×10 ⁻⁵ 7; α (P)=5.33×10 ⁻⁶ 8						
643.8 2	0.46 2	3026.2	5-	2382.4 4+	E1		0.00618	$\alpha(K)\exp=0.0125 \ 17.$ $\alpha(K)=0.00511 \ 8; \ \alpha(L)=0.000820 \ 12; \ \alpha(M)=0.000191 \ 3.$ $\alpha(N)=4.89\times10^{-5} \ 7; \ \alpha(O)=1.013\times10^{-5} \ 15; \ \alpha(P)=1.274\times10^{-6} \ 18.$						
701.0 2	0.47 2	3727.2	(6)-	3026.2 5-	M1		0.0523	α (K)exp=0.0047 8. α (K)=0.0427 6; α (L)=0.00730 11; α (M)=0.001716 24 α (N)=0.000442 7; α (O)=9.25×10 ⁻⁵ 13; α (P)=1.198×10 ⁻⁵ 17 α (K)exp=0.039 4						
721.6 ^{&} 3	0.10 4	3124.7?	(6)-	2403.1 5+	E1		0.00496	$\alpha(K) \exp [-0.039 4],$ $\alpha(K) = 0.00411 6; \alpha(L) = 0.000653 10; \alpha(M) = 0.0001521 22$						
724.7 2	0.21 3	3111.5	4-	2386.8 3-	M1+E2	1.02 27	0.031 6	$\alpha(N)=3.89\times10^{-5} 6; \ \alpha(O)=8.07\times10^{-6} 12; \ \alpha(P)=1.019\times10^{-6} 15 \\ \alpha(K)=0.025 5; \ \alpha(L)=0.0046 7; \ \alpha(M)=0.00109 15 \\ \alpha(N)=0.00028 4; \ \alpha(O)=5.8\times10^{-5} 8; \ \alpha(P)=7.3\times10^{-6} 11 \\ \alpha(K)\exp=0.040 4.$						
798.6 ^{&} 3	0.06 2	3124.7?	(6)-	2326.0 6+	E1		0.00410	$\alpha(L) = 0.00340 5; \alpha(L) = 0.000536 8; \alpha(M) = 0.0001247 18$						
817.2 2	1.72 5	3727.2	(6)-	2910.0 5-	M1+E2	0.53 23	0.030 4	$\alpha(N)=3.19\times10^{-5} \ 5; \ \alpha(O)=6.63\times10^{-6} \ 10; \ \alpha(P)=8.40\times10^{-7} \ 12 \\ \alpha(K)=0.024 \ 3; \ \alpha(L)=0.0042 \ 5; \ \alpha(M)=0.00100 \ 11 \\ \alpha(N)=0.00026 \ 3; \ \alpha(O)=5.4\times10^{-5} \ 6; \ \alpha(P)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D)=5.4\times10^{-5} \ 6; \ \alpha(D)=6.9\times10^{-6} \ 8 \\ \alpha(D)=0.0026 \ 3; \ \alpha(D$						
852.7 2	1.39 5	2326.0	6+	1473.2 6+	M1+E2	0.59 15	0.0259 21	$\alpha(K)\exp=0.030\ 2,\ \alpha(L)\exp=0.0055\ 5.$ $\alpha(K)=0.0211\ 18;\ \alpha(L)=0.0037\ 3;\ \alpha(M)=0.00087\ 6$ $\alpha(N)=0.000223\ 16;\ \alpha(O)=4.7\times10^{-5}\ 4;\ \alpha(P)=6.0\times10^{-6}\ 5$						
869.4 2	0.13 2	3779.4	(4,5)-	2910.0 5-	M1+E2	≤2	0.022 8	α (K)exp=0.024 2. α (K)=0.018 7; α (L)=0.0031 10; α (M)=0.00074 24 α (N)=0.00019 6; α (O)=4.0×10 ⁻⁵ 13; α (P)=5.1×10 ⁻⁶ 18						
881.1 2	0.22 2	2438.1	7+	1556.8 8+	M1+E2	0.56 17	0.0242 22	α (K)exp ≤ 0.0174 . α (K)=0.0197 <i>18</i> ; α (L)=0.0034 <i>3</i> ; α (M)=0.00081 <i>7</i> α (N)=0.000208 <i>16</i> ; α (O)=4.3×10 ⁻⁵ 4; α (P)=5.6×10 ⁻⁶ 5						
909.2 <i>3</i>	0.09 3	2382.4	4+	1473.2 6+				$\alpha(K) \exp = 0.018 \ 3.$						
929.9 2	0.76 3	2403.1	5+	1473.2 6+	M1+E2	0.72 11	0.0194 12	α (K)=0.0158 <i>10</i> ; α (L)=0.00277 <i>16</i> ; α (M)=0.00065 <i>4</i> α (N)=0.000168 <i>9</i> ; α (O)=3.50×10 ⁻⁵ <i>20</i> ; α (P)=4.5×10 ⁻⁶ <i>3</i> α (K)exp=0.020 <i>2</i>						
955.8 1	1.81 6	2382.4	4+	1426.7 4+	M1+E2	0.47 17	0.0206 17	$\alpha(K)=0.0168 \ 15; \ \alpha(L)=0.00289 \ 22; \ \alpha(M)=0.00068 \ 5$ $\alpha(N)=0.000175 \ 13; \ \alpha(O)=3.7\times10^{-5} \ 3; \ \alpha(P)=4.7\times10^{-6} \ 4$ $\alpha(K)=0.019 \ 2.$						
960.1 ^{&} 5	< 0.04	2386.8	3-	1426.7 4+	E1		0.00292	$\alpha(K)=0.00243 \ 4; \ \alpha(L)=0.000378 \ 6; \ \alpha(M)=8.78\times10^{-5} \ 13$ $\alpha(N)=2.25\times10^{-5} \ 4; \ \alpha(O)=4.68\times10^{-6} \ 7; \ \alpha(P)=5.97\times10^{-7} \ 9$						

From ENSDF

²¹⁰₈₄Po₁₂₆-5

L

210 At ε decay (8.1 h)	1972Ja12 (continued)
---	----------------------

γ ⁽²¹⁰Po) (continued)

E_{γ}	Ι _γ @	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger \#}$	α^{\ddagger}	Comments
964.9 2	0.16 4	2438.1	7+	1473.2	6 ⁺	M1+E2	1.0 2	0.0153 17	$\alpha(K)=0.0124$ 14; $\alpha(L)=0.00222$ 21; $\alpha(M)=0.00052$ 5
976.5 2	0.81 4	2403.1	5+	1426.7	4+	M1+E2	0.61 20	0.0182 19	α (N)=0.000135 <i>13</i> ; α (O)=2.8×10 ⁻⁵ <i>3</i> ; α (P)=3.6×10 ⁻⁶ <i>4</i> α (K)=0.0148 <i>16</i> ; α (L)=0.00257 <i>24</i> ; α (M)=0.00061 <i>6</i> α (N)=0.000156 <i>14</i> ; α (O)=3.3×10 ⁻⁵ <i>3</i> ; α (P)=4.2×10 ⁻⁶ <i>4</i> α (K)=0.010 2
1041.6 2	0.30 4	3428.3	5-	2386.8	3-	(E2)		0.00680	$\alpha(K) \exp[-0.019 2]$ $\alpha(K) = 0.00539 8; \alpha(L) = 0.001073 15; \alpha(M) = 0.000257 4$ $\alpha(N) = 6.61 \times 10^{-5} 10; \alpha(O) = 1.359 \times 10^{-5} 19; \alpha(P) = 1.663 \times 10^{-6} 24$
1045.9 <i>3</i>	0.16 3	3428.3	5-	2382.4	4+				
1087.2 3	0.22 3	3525.2	6-	2438.1	7+	(E1+M2)	0.29 6	0.0053 12	α (K)=0.0043 <i>10</i> ; α (L)=0.00075 <i>19</i> ; α (M)=0.00018 <i>5</i>
1181.4 <i>1</i>	100.0 25	1181.4	2+	0.0	0+	E2		0.00535	$\alpha(N)=4.5\times10^{-5} 12; \ \alpha(O)=9.5\times10^{-5} 24; \ \alpha(P)=1.2\times10^{-5} 3$ $\alpha(K)=0.00428 \ 6; \ \alpha(L)=0.000812 \ 12; \ \alpha(M)=0.000193 \ 3$ $\alpha(N)=4.97\times10^{-5} 7; \ \alpha(O)=1.025\times10^{-5} \ 15; \ \alpha(P)=1.270\times10^{-6} \ 18; \ \alpha(P)=2.27\times10^{-6} \ 4$
1201.2 2	0.16 2	2382.4	4+	1181.4	2+	E2		0.00519	$\alpha(\text{IFF})=2.37\times10^{-4} 4$ $\alpha(\text{K})=0.00415\ 6;\ \alpha(\text{L})=0.000783\ 11;\ \alpha(\text{M})=0.000186\ 3$ $\alpha(\text{N})=4.79\times10^{-5}\ 7;\ \alpha(\text{O})=9.89\times10^{-6}\ 14;\ \alpha(\text{P})=1.226\times10^{-6}\ 18;$ $\alpha(\text{IPF})=3.78\times10^{-6}\ 6$
1205.4 2	0.80 <i>3</i>	2386.8	3-	1181.4 2	2+	E1		0.00197	Mult.: from α (K)exp<0.012 and π (initial)= π (final). α (K)=0.001627 23; α (L)=0.000250 4; α (M)=5.79×10 ⁻⁵ 9 α (N)=1.484×10 ⁻⁵ 21; α (O)=3.10×10 ⁻⁶ 5; α (P)=3.97×10 ⁻⁷ 6; α (IPF)=1.619×10 ⁻⁵ 24 α (K)exp<0.0025
1280.0.2	0.52.2	2707 0	$(6)^{-}$	2/38 1	7+				$\alpha(\mathbf{K})\exp(0.0025)$
1324 1 2	0.322	3727.2	$(0)^{-}$	2438.1	, 5+				
1436.7 1	29.2 13	2910.0	5-	1473.2	6 ⁺	E1		1.57×10 ⁻³	$\alpha(K)=0.001205 \ 17; \ \alpha(L)=0.000184 \ 3; \ \alpha(M)=4.25\times10^{-5} \ 6$ $\alpha(N)=1.089\times10^{-5} \ 16; \ \alpha(O)=2.27\times10^{-6} \ 4; \ \alpha(P)=2.93\times10^{-7} \ 4; \ \alpha(PF)=0.0001258 \ 18 \ \alpha(K)=0.00113 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10$
1483.3 <i>1</i>	46.8 20	2910.0	5-	1426.7	4+	E1		1.52×10 ⁻³	$\alpha(\mathbf{K}) \approx p = 0.00113 \ 10.$ $\alpha(\mathbf{K}) = 0.001142 \ 16; \ \alpha(\mathbf{L}) = 0.0001738 \ 25; \ \alpha(\mathbf{M}) = 4.02 \times 10^{-5} \ 6$ $\alpha(\mathbf{N}) = 1.031 \times 10^{-5} \ 15; \ \alpha(\mathbf{O}) = 2.15 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 2.77 \times 10^{-7} \ 4; \ \alpha(\mathbf{IPF}) = 0.0001557 \ 22$ $A_2(1483\gamma) \ (245\gamma)(\theta) = -0.084 \ 21 \ (1963Sc15) \ scin.$ $\alpha(\mathbf{K}) \approx p = 0.00106 \ 10.$
1543.5 ^{&} 3	0.03 1	3016.7?	(7)-	1473.2	6+	E1		1.48×10 ⁻³	$\alpha(K) = 0.001069 \ 15; \ \alpha(L) = 0.0001623 \ 23; \ \alpha(M) = 3.76 \times 10^{-5} \ 6$ $\alpha(N) = 9.62 \times 10^{-6} \ 14; \ \alpha(O) = 2.01 \times 10^{-6} \ 3; \ \alpha(P) = 2.59 \times 10^{-7} \ 4;$ $\alpha(IPF) = 0.000196 \ 3$
1552.7 2	0.17 1	3026.2	5^{-}	1473.2	6+				
1599.5 <i>1</i>	13.5 6	3026.2	5-	1426.7	4+	E1		1.44×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001007 \ 14; \ \alpha(\mathrm{L}) = 0.0001527 \ 22; \ \alpha(\mathrm{M}) = 3.53 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 9.06 \times 10^{-6} \ 13; \ \alpha(\mathrm{O}) = 1.89 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 2.44 \times 10^{-7} \ 4; \\ &\alpha(\mathrm{IPF}) = 0.000235 \ 4 \\ &A_2(1600\gamma) \ (245\gamma)(\theta) = -0.082 \ 24 \ (1963\mathrm{Sc}15) \ \mathrm{scin.} \\ &\alpha(\mathrm{K}) \exp = 0.00093 \ 10. \end{aligned}$

6

²¹⁰ At ε decay (8.1 h)	1972Ja12 (continued)
---	----------------------

γ ⁽²¹⁰Po) (continued)

Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	$\delta^{\dagger \#}$	α^{\ddagger}	Comments
1648.4 ^{&} 2	0.072 8	3075.1?	(4)-	1426.7 4+	E1		1.42×10 ⁻³	α (K)=0.000958 <i>14</i> ; α (L)=0.0001451 <i>21</i> ; α (M)=3.36×10 ⁻⁵ 5 α (N)=8.60×10 ⁻⁶ <i>12</i> ; α (O)=1.80×10 ⁻⁶ <i>3</i> ; α (P)=2.32×10 ⁻⁷ <i>4</i> ; α (IPF)=0.000270 <i>4</i>
1684.6 5	0.026 4	3111.5	4-	1426.7 4+	E1		1.40×10^{-3}	$\alpha(\text{M}) = 0.000216 \ 1/3; \ \alpha(\text{L}) = 0.0001398 \ 20; \ \alpha(\text{M}) = 3.23 \times 10^{-5} \ 5$ $\alpha(\text{N}) = 8.29 \times 10^{-6} \ 1/2; \ \alpha(\text{O}) = 1.732 \times 10^{-6} \ 25; \ \alpha(\text{P}) = 2.24 \times 10^{-7} \ 4; \ \alpha(\text{IPF}) = 0.000296 \ 5$
1955.0 2	0.41 2	3428.3	5-	1473.2 6+	E1		1.36×10 ⁻³	$\alpha(K)=0.000723 \ 11; \ \alpha(L)=0.0001088 \ 16; \ \alpha(M)=2.52\times10^{-5} \ 4 \\ \alpha(N)=6.45\times10^{-6} \ 9; \ \alpha(O)=1.348\times10^{-6} \ 19; \ \alpha(P)=1.746\times10^{-7} \ 25; \\ \alpha(IPF)=0.000492 \ 7 $
2001.7 2	0.11 1	3428.3	5-	1426.7 4+				
2051.9 3	0.071 3	3525.2	6-	1473.2 6+	(E1)		1.36×10 ⁻³	α (K)=0.000668 <i>10</i> ; α (L)=0.0001004 <i>14</i> ; α (M)=2.32×10 ⁻⁵ <i>4</i> α (N)=5.95×10 ⁻⁶ <i>9</i> ; α (O)=1.244×10 ⁻⁶ <i>18</i> ; α (P)=1.612×10 ⁻⁷ <i>23</i> ; α (IPF)=0.000561 <i>8</i>
2226.0 3	0.046 3	3699.3	5-	1473.2 6+	E1+M2	0.61 19	0.0028 7	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0018 \ 6; \ \alpha(\mathrm{L}) = 0.00031 \ 10; \ \alpha(\mathrm{M}) = 7.2 \times 10^{-5} \ 24 \\ \alpha(\mathrm{N}) = 1.9 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 3.9 \times 10^{-6} \ 13; \ \alpha(\mathrm{P}) = 5.1 \times 10^{-7} \ 17; \\ \alpha(\mathrm{IPF}) = 0.00058 \ 5 \end{array}$
2237.9 ^{&} 5	0.018 2	3711.2?	(5 ⁻)	1473.2 6+	(E1)		1.38×10 ⁻³	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000581 \ 9; \ \alpha(\mathrm{L}) = 8.70 \times 10^{-5} \ 13; \ \alpha(\mathrm{M}) = 2.01 \times 10^{-5} \ 3 \\ \alpha(\mathrm{N}) = 5.15 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 1.078 \times 10^{-6} \ 16; \ \alpha(\mathrm{P}) = 1.399 \times 10^{-7} \ 20; \\ \alpha(\mathrm{IPF}) = 0.000688 \ 10 \end{array} $
2246.6 <mark>&</mark> 5	0.026 4	3428.3	5-	1181.4 2+				E_{γ} : Uncertain placement – not adopted.
2254.0 2	1.53 5	3727.2	(6)-	1473.2 6+	E1		1.38×10 ⁻³	$\alpha'(K)=0.000574 \ 8; \ \alpha(L)=8.60\times10^{-5} \ 12; \ \alpha(M)=1.99\times10^{-5} \ 3 \ \alpha(N)=5.09\times10^{-6} \ 8; \ \alpha(O)=1.066\times10^{-6} \ 15; \ \alpha(P)=1.383\times10^{-7} \ 20; \ \alpha(IPF)=0.000698 \ 10$
x2266.8 3	0.029 5						2	5
2272.7 3	0.35 1	3699.3	5-	1426.7 4+	E1		1.39×10 ⁻⁵	$ \begin{array}{l} \alpha(\text{K}) = 0.000566 \ 8; \ \alpha(\text{L}) = 8.48 \times 10^{-3} \ I2; \ \alpha(\text{M}) = 1.96 \times 10^{-3} \ 3 \\ \alpha(\text{N}) = 5.02 \times 10^{-6} \ 7; \ \alpha(\text{O}) = 1.051 \times 10^{-6} \ I5; \ \alpha(\text{P}) = 1.364 \times 10^{-7} \ 20; \\ \alpha(\text{IPF}) = 0.000711 \ I0 \end{array} $
2284.5 ^{&} 3	0.019 2	3711.2?	(5 ⁻)	1426.7 4+				
2290.0 ^{&} 3	0.012 3	2290.2?	2+	0.0 0+	E2		0.00198	α (K)=0.001303 <i>19</i> ; α (L)=0.000213 <i>3</i> ; α (M)=4.97×10 ⁻⁵ <i>7</i> α (N)=1.276×10 ⁻⁵ <i>18</i> ; α (O)=2.66×10 ⁻⁶ <i>4</i> ; α (P)=3.42×10 ⁻⁷ <i>5</i> ; α (IPF)=0.000395 <i>6</i>
2306.2 3	0.037 2	3779.4	$(4,5)^{-}$	1473.2 6+				
2352.8 2	0.14 1	3779.4	(4,5) ⁻	1426.7 4+	E1		1.40×10^{-3}	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.000536 \ 8; \ \alpha(\mathrm{L}) = 8.02 \times 10^{-5} \ 12; \ \alpha(\mathrm{M}) = 1.85 \times 10^{-5} \ 3 \\ &\alpha(\mathrm{N}) = 4.75 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 9.93 \times 10^{-7} \ 14; \ \alpha(\mathrm{P}) = 1.290 \times 10^{-7} \ 18; \\ &\alpha(\mathrm{IPF}) = 0.000763 \ 11 \end{aligned} $
2386.8 <i>3</i>	0.008 2	2386.8	3-	0.0 0+	[E3]		0.00309	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00227 \ 4; \ \alpha(\mathrm{L}) = 0.000409 \ 6; \ \alpha(\mathrm{M}) = 9.68 \times 10^{-5} \ 14 \\ \alpha(\mathrm{N}) = 2.49 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 5.18 \times 10^{-6} \ 8; \ \alpha(\mathrm{P}) = 6.57 \times 10^{-7} \ 10; \\ \alpha(\mathrm{IPF}) = 0.000286 \ 4 \end{array} $

From ENSDF

²¹⁰At ε decay (8.1 h) 1972Ja12 (continued)

 γ ⁽²¹⁰Po) (continued)

[†] From Adopted Gammas. Measured values of α (K)exp, K/L, and L-subshell ratios are consistent with adopted multipolarities.

- [‡] Additional information 1. [#] If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- [@] For absolute intensity per 100 decays, multiply by 0.993 25.
- [&] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

²¹⁰At ε decay (8.1 h) 1972Ja12

²¹⁰At ε decay (8.1 h) 1972Ja12

