²¹⁰Hg IT decay (2 μ s) 2013Go10

	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 121, 561 (2014)	31-Mar-2014

Parent: ²¹⁰Hg: E=x+1366; J^{π} =(8⁺); T_{1/2}=2 μ s *I*; %IT decay=100.0 Others: 2010Al24, 1998Pf02, 1998PfZZ.

2013Go10: ²¹⁰Hg isomer was produced from fragmentation of ²³⁸U, 1 GeV/nucleon, beam on beryllium target (2.5 g/cm²) followed by a niobium (223 mg/cm²) stripper. Pulsed beam of ~1 s separated by ~2 s, fragmented products were separated and identified with the double-stage magnetic spectrometer FRS at GSI. Separated ions were slowed down in a thick Al degrader and implanted in a composite double-sided silicon-strip (DSSD) detector. The DSSD was surrounded by the RISING γ -ray spectrometer consists of 105 large volume germanium crystals. Measured E γ , I γ , x-ray, and T_{1/2}. Deduced level scheme.

2010Al24: ²¹⁰Hg was produced from fragmentation of a 1 GeV/nucleon beam of ²³⁸U on a beryllium target. The ions of ²¹⁰Hg were separated and analyzed with the GSI fragment separator (2010Al24,1998Pf02,1998PfZZ). Production cross section measured in 2010Al24, for ²¹⁰Hg $\sigma \approx 0.02 \ \mu$ b (estimated by evaluator from Fig. 2).

All data from 2013Go10.

²¹⁰Hg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		
643	(2^{+})		
1196	(4^{+})		
1366	(6^{+})		
x+1366	(8+)	2 µs 1	$T_{1/2}$: From 553 γ (t). Other: 2.0 μ s 4 from 643 γ (t).

[†] From γ -ray energy and feeding.

[‡] From shell model calculation and γ ray feeding, except otherwise noted.

 $\gamma(^{210}\text{Hg})$

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
у		x+1366	(8+)			E_{γ} : 20 < Y < 80 keV suggested in 2013Go10. Upper limit from x-ray measurements – the 71 keV identified as characteristics K_{α} x ray following 170 keV γ -ray. Lower limit from systematics.
170	22 12	1366	(6 ⁺)	1196	(4^{+})	
553	23 8	1196	(4^{+})	643	(2^{+})	
643	100 16	643	(2^{+})	0.0	0^{+}	

