²¹⁰Hg IT decay (2.1 μ s) **2013Go10** History Type Author Citation Literature Cutoff Date Full Evaluation M. Shamsuzzoha Basunia NDS 121, 561 (2014) 31-Mar-2014 Parent: 210 Hg: E=663; J^{π} =(3 $^{-}$); $T_{1/2}$ =2.1 μ s 7; %IT decay=100.0 210 Hg isomer was produced from fragmentation of 238 U, 1 GeV/nucleon, beam on beryllium target (2.5 g/cm²) followed by a niobium (223 mg/cm²) stripper. Pulsed beam of ~1 s separated by ~2 s, fragmented products were separated and identified with the double-stage magnetic spectrometer FRS at GSI. Separated ions were slowed down in a thick Al degrader and implanted in a composite double-sided silicon-strip (DSSD) detector. The DSSD was surrounded by the RISING γ -ray spectrometer consists of 105 large volume germanium crystals. Measured E γ , I γ , x-ray, and T $_{1/2}$. Deduced level scheme. ## ²¹⁰Hg Levels | E(level) | $J^{\pi \ddagger}$ | $T_{1/2}$ | Comments | |---------------------|--|-----------|---| | 0.0
643
(663) | 0 ⁺ (2 ⁺) (3 ⁻) | 2.1 μs 7 | J ^π : (3 ⁻) in 2013Go10, based on unobserved but expected highly converted 20 keV γ-ray feeding the (2 ⁺) state, 663γ to 0 ⁺ g.s., and calculated reduced transition strengths. Shell model calculation can not reliably predict the location of a 3 ⁻ state, because it does not allow core excitations and also the 3 ⁻ state in the lead region is very fragmented as mentioned in 2013Go10. For ²⁰⁸ Pb, ²¹⁰ Pb, and ²¹⁴ Pb nuclides 3 ⁻ state is prediction at much higher energy. T _{1/2} : From 663γ(t). | [†] From γ -ray energy and feeding. ## γ (²¹⁰Hg) | E_{γ} | I_{γ} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f | \mathbf{J}_f^{π} | Mult. | Comments | |--------------|--------------|--------------|----------------------|----------------|----------------------|-------|---| | (20) | | (663) | (3-) | 643 | (2+) | [E1] | E_{γ} : γ-ray proposed with 3/4 intensity of 643γ from the intensity balance at 643 keV level. | | 643 | 100 16 | 643 | (2^{+}) | 0.0 | 0_{+} | | | | 663 | 65 13 | (663) | (3^{-}) | 0.0 | 0_{+} | [E3] | | $^{^{\}ddagger}$ From shell model calculation and γ ray feeding, except otherwise noted. ##