¹⁹⁷Au(¹⁶O,3nγ):1 2011Ka37

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	M. Shamsuzzoha Basunia	NDS 121, 561 (2014)	31-Mar-2014			

Target: Enriched (99.95%) ¹⁹⁷Au target (thickness 3.5 mg/cm²); Projectile: ¹⁶O beam, E=88, 94, 100 MeV. Gamma rays were detected by an array of 18 Compton-suppressed clover Ge detectors. Measured E γ , I γ , γ - γ coin, DCO ratio. Deduced excited levels, J, π , mean lifetime.

²¹⁰ Fr	Levels
-------------------	--------

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	6+		
208.3 14	(7^{+})		
524.7 25	(9^{+})		J^{π} : (4 to 8) ⁺ in Adopted Levels.
728 4	(9-)	41 ns 2	
985 [@] 4	(11)		
1505 5	(11)		
1686 5	(12)		
1730 5	(12)		
1802 [@] 5	(12)		
2073 5	(13)		
2407 5	(12)		
2523 [@] 5	(13)		
2609 6	(13)		
2852 [@] 5	(14)		
2951 6	(13)		
3358 [@] 5	(15)		
3442 6	(15)		
3647 [@] 6	(16)		
3765 [@] 6	(17)		
4252 [@] 6	(18)		
4538 [@] 6	(19)		
5291 [@] 7	(20)		

 † From least-squares fit to $\gamma\text{-ray energies.}$

[‡] In 2011Ka37, assignments are made assuming $J^{\pi}=7^+$ of first excited state at 208.3 keV and $J^{\pi}=9^+$ at 524.7-keV level from 316 γ (E2) transition (9⁺ to 7⁺).

[#] From Doppler Shift Attenuation Method and line-shape analysis. Systematic uncertainties up to 10% are not included in the quoted uncertainty.

[@] Band(A): $\Delta J=1$ sequence based on 11.

$\gamma(^{210}{\rm Fr})$

DCO values correspond to 90°, 123°, and 148° with gates on stretched quadrupole γ rays of 257 or 820 keV. Numerical values are from an e-mail (January 4, 2012) communication sent by S. Saha to M. Birch and B. Singh (McMaster), XUNDL compilars of this dataset.

¹⁹⁷Au(¹⁶O,3nγ):1 2011Ka37 (continued)

γ ⁽²¹⁰ Fr) (continued)								
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments
(72)		1802	(12)	1730	(12)			E_{γ} : From level-energy difference.
118.6 18	10.0 10	3765	(17)	3647	(16)	D		DCO=0.57 14
203.4 23	41.2 25	728	(9-)	524.7	(9+)	(E1)	0.085 3	DCO=0.98 10
								Mult.: $\Delta J=0$ transition from DCO.
208.3 14	7.4 22	208.3	(7^{+})	0.0	6+			
225.4 17	3.5 5	1730	(12)	1505	(11)	D		DCO=0.51 12
256.9 [#] 19	100	985	(11)	728	(9-)	Q		Mult.: (E2) in 2011Ka37, based on analogy with transitions in ²⁰⁸ Fr. Evaluator assigned O.
270.7 15	2.5 5	2073	(13)	1802	(12)	D		DCO≈0.5
285.9 15	7.90 24	4538	(19)	4252	(18)	D		DCO=0.55 24
289.3 20	15.5 <i>3</i>	3647	(16)	3358	(15)	D		DCO=0.49 11
316.4 20	15.1 17	524.7	(9^{+})	208.3	(7^{+})	(E2)	0.124 3	DCO=1.08 21
								Mult.: $\Delta J=2$ from DCO and from comparison with 632 γ , 847 γ transitions of (9 ⁺ to 7 ⁺) in ²⁰⁸ Fr, ²¹² Fr, respectively.
329.7 19	16.6 17	2852	(14)	2523	(13)	D		DCO=0.58 20
486.2 19	8.1 8	4252	(18)	3765	(17)	D		DCO=0.48 17
505.3 17	5.3 7	3358	(15)	2852	(14)	D		DCO=0.6 3
519.6 20	25.8 13	1505	(11)	985	(11)	D		DCO=1.13 28
								Mult.: $\Delta J=0$ transition.
544.2 21	7.6 11	2951	(13)	2407	(12)	D		DCO=0.55 11
589.2 21	5.2 11	3442	(15)	2852	(14)	D		DCO=0.48 16
700.5 24	13.4 20	1686	(12)	985	(11)	D		DCO=0.62 12
721.1 22	42.9 9	2523	(13)	1802	(12)	D		DCO=0.47 13
753.9 17	4.5 9	5291	(20)	4538	(19)	D		DCO≈0.5
792.6 22	17 <i>3</i>	2523	(13)	1730	(12)	D		DCO=0.50 16
816.8 <mark>#</mark> 26	50 <i>3</i>	1802	(12)	985	(11)	D		DCO=0.55 10
834.7 23	25.8 21	3358	(15)	2523	(13)	Q		DCO=1.13 16
902.4 25	10.6 16	2407	(12)	1505	(11)	D		DCO=0.6 3
923.4 25	5.2 13	2609	(13)	1686	(12)	D		DCO=0.53 18

[†] Quoted uncertainties are FWHM measured in the experiment.

[±] From DCO ratios, unless otherwise stated. Mult=D corresponds $\Delta J=1$ transition, except $\Delta J=0$ for 519.6 γ as indicated; mult=Q indicates $\Delta J=2$ transition. Note that for $\Delta J=1$ transitions, quadrupole admixture is also possible.

 [#] Excitation function measured in 2011Ka37.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{210}_{87}\mathrm{Fr}_{123}$

3

¹⁹⁷Au(¹⁶O,3nγ):1 2011Ka37

