						History		
		Туре		Auth	or	Citatio	n	Literature Cutoff Date
		Full Evaluation	M. Sl	namsuzzo	oha Bas	unia NDS 121, 561	(2014)	31-Mar-2014
Q(β ⁻)=1161.2 8; Other reactions. ²⁰⁸ Pb(t,n): 1998B ²⁰⁸ Pb(d,n): 1998B ²⁰⁹ Bi(³⁶ Ar, ³⁵ Ar): ²⁰⁹ Bi(²⁰ Ne, ¹⁹ Ne): Be(²³⁸ U,xnγ): 190 ⁹ Be(²³⁸ U,X): 200	S(n)=40 e87, 19 e81. 1996L1 1994B 98Pf02. 9A132 -	604.63 8; S(p)=44 98Be81. h02, 1994Bo02. 5002.	466.3 I	t1; Q(α)=	=5036.0 tion. Fo) 8 2012Wa38 or ²¹⁰ Bi σ ≈0.02 mb (estimated	l from Fig. 4.).
						²¹⁰ Bi Levels		
				(Cross R	eference (XREF) Flag	<u>ş</u> s	
	A B C D E	²¹⁰ Pb β^- decay ²¹⁴ At α decay ²¹⁴ At α decay ²¹⁴ At α decay ⁹ Be(²³⁸ U,xn γ)	y (558 m (760 m (265 m	F Is) G Is) H Is) I J	²⁰⁸ Pl ²⁰⁹ B ²⁰⁹ B ²⁰⁹ B ²⁰⁹ B	$b(\alpha,d)$ $i(n,\gamma)$ E=thermal $i(n,\gamma)$:resonances i(d,p) i(pol d,p) E=12.0 Me	K L M N V	²⁰⁹ Bi(d,p γ) E=8-10 MeV ²⁰⁹ Bi(α , ³ He) E=58 MeV ²⁰⁹ Bi(¹⁷ O, ¹⁶ O γ) ²⁰⁸ Pb(²⁰⁸ Pb,X γ)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		XREF				Comments
0.0@	1-	5.012 d 5	AB I) FG IJ	K N	$\[\] \] \label{eq:bigger} \[\] \] \] \] \] \] \] \] \] \] \] \] \] $	$\times 10^{-5}$ <i>I</i> (0.136 <i>I</i>) age of 5 .02 d 2 (n (1976F) 962A102	0 013 d 5 (1956Ro18,1959Ro51), 5.02 1952Be22), and 4.989 d $I3$ fu06). π =-, L=4 in (d,p). ,1989Ra17).
46.5390 [@] 10	0-	<3 ns	A	FG IJ	ĸ	$T_{1/2}$: βγ(t) (1955Le2 J ^π : 46.5γ M1 to 1 ⁻ . E(level): from ²¹⁰ Pb	29). Analogy β ⁻ deca	with $J^{\pi}=0^{-}$ level in ²¹² Bi.
271.31 [@] 11	9-	3.04×10 ⁶ y 6	С	FG IJ	K N	%α = 100 μ=2.728 42; Q=-0.4 Additional information μ,Q: Laser spectroscilded detection. Isotope $T_{1/2}$: specific activity 3.55×10^6 y 12 specific activity 3.55×10^6 y 8 (1953) J^{π} : L=(9) in (α,d), J $%β^-<3 \times 10^{-5}$, %IT< (1976TuZY).	71 59 on 1. opy in reshift (19 y measure ceific action 8Hu42). (max)=90 3×10^{-5}	esonance cells with fluorescence 97Ki15,2000Pe30). ement (1976TuZY). Other values: ivity measurement (1969La01), $(\beta^-$ or IT decay not observed)
319.73 [@] 4	2-	5.2 ps 10	В	FG IJ	КМ	$T_{1/2}$: recoil-distance	Doppler	measurement (1975Do12).
347.95 [@] 4	3-		В	FG IJ	ĸ	J^{π} : 28 γ to 2 ⁻ , 347 γ	to 1^- . L	=4 in (d,p).
433.48 [@] 12	7-	57.5 ns <i>10</i>	C	EFG iJ	ĸ	μ =+2.114 49 T _{1/2} : weighted avera (1973Pr11). Other μ : differential perturn (1972Ba65,1989R	nge of 56 : 58 ns (bed angu a17).	.8 ns 10 (1972Ba65) and 59.0 ns 15 1998Pf02). lar correlations of γ rays (DPAD)

²¹⁰Bi Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}		XREF	Comments
439.24 [@] 4	5-	38 ns 1	C	GilK	$\mu = +1.530.45$
	c	00 10 1	Ĩ	•	$T_{1/2}$: From 1973Pr11. Others: 37.0 ns <i>14</i> (1972Ba65) and 38 ns <i>6</i> (1971El01).
					μ : differential perturbed angular correlations of γ rays (1972Ba65,1989Ra17).
502.84 [@] 4	4-	<1.4 ns		FG IJK	$T_{1/2}$: from γ (t) in (d,p γ) (1971El01). J ^{π} : L=4 in (d,p).
550.04 [@] 4	6-	<1.4 ns		FG IJK	$T_{1/2}$: from $\gamma(t)$ in (d,p γ) (1971El01). J^{π} : L=4 in (d,p).
563.16 ^{&} 5	(1^{-})		В	GK	
582.54 [@] 12	8-	<1.7 ps		FG IJK M	$T_{1/2}$: recoil-distance Doppler measurement (1975Do12). J ^{π} : L=4 in (d,p).
669.0 ^{&} 5	10-	100 ps 18	C	FG I KLMN	E(level): from ²⁰⁹ Bi(d,p γ). J ^{π} : L=6 in (d,p); L=11 in (α ,d), J(max)=10.
916.11 ^a 13	8-			FG TJK	$I_{1/2}$: recon-distance Doppler measurement (1975D012). I^{π} : L=4 in (d.p): L=7 in (α .d). I(max)=8.
971.92 ^{&} 5	(2^{-})			GTK	$J^{\pi}: L = (6) \text{ in } (d, p).$
$993.72^{b}.5$	(2^+)			FGTKI	$I^{\pi}: I = (0)$ in (d,p).
1164.64^{a} 6	(1^{-})			G	$J : L^{-}(T) $ III (u,p).
1175.33 ^{<i>a</i>} 5	(2^{-})			GIL	J^{π} : from spectroscopic strength in (d,p).
1184.15 ^{&} 12	(8-)			FG K	J^{π} : from spectroscopic strength in (d,p).
1197.3 5	(0)			GI	· · · · · · · · · · · · · · · · · · ·
1208.41 ^{<i>a</i>} 12	(6 ⁻)			FG K	
1248.04 ^{&} 6	(4 ⁻)			FGIK	J^{π} : L=(4,2) in (d,p); L=(5) in (α ,d).
1300.61 ^{&} 12	(7^{-})			Gi l	
1322.2 8	(11^{+})			FI N	J^{π} : L=10 in (α ,d), J(max)=11; 653 γ to 10 ⁻ .
1335.71 <mark>&</mark> 6	(5 ⁻)			Gi l	J^{π} : L=6 in (d,p).
1339.33 <mark>&</mark> 6	(6 ⁻)			G K	
1346.0 6				G	
1373.99 <mark>&</mark> 6	(3 ⁻)			FG i Kl	
1382.34 ^{<i>a</i>} 14	(7 ⁻)			G i Kl	
1390.00 ^{<i>a</i>} 6	(4 ⁻)			G	
1462.83 ^{<i>a</i>} 5	(5^{-})			GIKL	J^{π} : L=6 in (d,p).
14/3.1 11	(12^{+})			FILN	J ^{<i>a</i>} : L=(12) in (α ,d); L=7 in (d,p); 151 γ to (11 ⁺).
14/5.85 0	(3)			G	
$14/8.90^{\circ}$ 15	(9)			GK	
1523.30 6	(4+)			FGIL	J^{n} : L=7 in (d,p).
1531.12 ^{<i>a</i>} 16	(2^+)			G	
1585.24° 9	(2)			FGIK	J^{n} : L=2 in (d,p).
1/06.54 6	(5 ⁺)			FGIL	J^{n} : L=7 in (d,p).
1753.50 5	(10^{+})			FGIL	J^{π} : L=7 in (d,p).
1776.38 ⁰ 13	(6^{+})			GIL	J^{π} : L=7 in (d,p).
1793.41 ⁰ 15	(8^{+})			GI 1	
1801 1812	(11^+) (8^+)			FI1 I	J^{π} : L=7 in (d,p) and (α , ³ He). J^{π} : L=7 in (d,p).
1837.06 ^b 7	(7^{+})			FG I L	J^{π} : L=7 in (d,p).
1896.84 ^d 15	(3 ⁺)			G	
1896.93 ^e 14	(9 ⁻)			G	
1908 4				F	

²¹⁰Bi Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1924.40 ^c 9	(2^{-})	GIK	J^{π} : L=2 in (d,p).
1980.33 ^c 12	(7-)	GIK	J^{π} : L=2 in (d,p).
1984.71 ^e 8	(3-)	fG K	
1987 4	(2^{-})	F	$J^{n} = (11^{+}, 12^{+})$ from L=(12) in (α ,d).
$1990.18^{\circ} 9$ 2005 99 ^e 14	(3) (8^{-})	G	
2005.99 17 2006.25 ^d 7	(0^{+})	G	
2000.25 /	(6^+)	G	
2015.55 11 2026 69 ^h 10	(1^+)	G	
2020.09 10 2034.27 ^c 5	(5^{-})	FGIK	J^{π} : L=2 in (d,p).
2072.51 ^b 16	(9 ⁺)	GL	
2079.18 [°] 8	(4-)	GIK	J^{π} : L=2 in (d,p).
2099.30 ^e 13	(5 ⁻)	G	
2099.4 ^b 5	(11 ⁺)	FG L	XREF: L(2110). J^{π} : L=(12) in (α ,d) probably corresponds to 2100.2 level. E(level): From (n , γ) E=thermal.
2108.33 ^C 17	(6 ⁻)	GIK	J^{π} : L=2 in (d,p).
2135.14° 5	(7^{-})	FG	I^{π} · I - 2 in (d n)
2138 5	(5)	F	J : L-2 m (u,p).
2177.25 ^e 6	(4 ⁻)	FGIK	J^{π} : L=2 in (d,p).
2237.81 ^e 13	(6 ⁻)	FG I K	J^{π} : L=2 in (d,p).
2258.88 ^d 13	(7^{+})	G	
2280 5	((-))	FI	
2314.14° <i>15</i> 2464	(6)	G F I	
2525.14 ⁷ 2543 5	(4 ⁻)	FG I K F	J^{π} : L=0 in (d,p).
2578.75 ⁵ 8	(5 ⁻)	FG I K	J^{π} : L=0 in (d,p); L=5 in (α ,d), J(max)=5.
2610.10 ^{<i>l</i>} 9 2664 5	(4 ⁻)	FG I K F	J^{π} : L=0 in (d,p).
2724.07 ^h 14	(8 ⁺)	G	
2725.3 11	(14-)	F N	J^{π} : L=(13) in (α ,d), J(max)=14: Configuration=(($\pi i_{13/2}$) ($\nu j_{15/2}$)) (2014Ci03).
2737.19 <i>J 13</i>	(8 ⁻)	GIK	J^{π} : L=4 in (d,p).
2758.96 ^h 7	(6 ⁺)	G	
2764.97 14	(3+)	±G K	
2765.167 9	(3 ⁻)	±G I	J^{π} : L=4 in (d,p).
2818.00 ³ 15 2819.05 ⁸ 8	(1) (4^+)	GI	J^{n} : L=4 in (d,p).
2840.46^{j} 15	(4) (6 ⁻)	FGIK	XREF: F(2833). I^{π} : I = 2 in (d n)
2868 6		F	$J : L=2 \operatorname{III}(\mathbf{u},\mathbf{p}).$
2910.15 ^h 13	(7^{+})	G	
2921.15 ⁱ 7	(5 ⁻)	FG I	J^{π} : L=2 in (d,p).
2966.46 ^j 12	(4 ⁻)	GIK	J^{π} : L=4 in (d,p).
3004.53 ^j 6	(2 ⁻)	G	-
3010.86 ⁱ 17	(2 ⁻)	GI	J^{π} : L=4 in (d,p).
3039.56 ^k 10	(3 ⁻)	FG I K	J^{π} : L=2 in (d,p).
3069.54 ^k 7	(4 ⁻)	GI	J^{π} : L=4 in (d,p).
3108.53 ^j 14	(5 ⁻)	GIK	

²¹⁰Bi Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
3123 6			F		
3141.32 ^k 15	(6 ⁻)		GIK		J^{π} : L=2 in (d,p).
3182.5 4	(4 ⁻)		IK		E(level): from 209 Bi(d,p γ).
					J^{π} : L=2 in (d,p).
					E(level): from 209 Bi(d,p γ).
3209.75 ^k 6	(5 ⁻)		FG I K		J^{π} : L=4 in (d,p).
3244.63 ^j 16	(7^{-})		FG I K		J^{π} : L=4 in (d,p).
3294.1 14	(13^{+})		I	N	XREF: I(3299).
2220			. т		J^{n} : 1821 γ to (12 ⁺).
3330			г 1 т		
3412 7			F		
3443 7			F		
3469.2 13	(15 ⁺)	11.1 ns 7		N	$J^{\pi}, T_{1/2}$: From (²⁰⁸ Pb, X γ). 175 γ (E2) to (13 ⁺).
3502 7			F		
3538 7	(4 C+)		F		
4030.2 15	(16')		F	Ν	XREF: $F(4025)$.
4085 8 12	(14^{-})			N	J^{-1} : $JO1\gamma$ (0 (15 ⁻). I^{π} : 153 γ feeding this level from (15 ⁻) state
4188	(17)		F		J 1557 recard this level from (15-) state.
4239.1 13	(15 ⁻)		_	N	J^{π} : 1514 γ to (14 ⁻).
4463.1 15	(16 ⁻)			N	J^{π} : 224 γ to (15 ⁻).
4594.1 <i>16</i>	(17 ⁻)			N	J ^{π} : γ ray transitions to (16 ⁻) and (16 ⁺) states.
4605.43 8	(5) #		Н		
4606.95 8	(4) [#]		Н		
4607.98 8	(5) [#]		Н		
4609.09 8	(5) [#]		Н		J^{π} : Other: (4) (2006MuZX).
4609.74 8	(5) [#]		Н		
4610.92 8	(4) [#]		Н		
4611.16 8	(3) [#]		Н		J^{π} : Other: (5) (2006MuZX).
4613.65 8	(6) [#]		н		J^{π} : Other: (5) (2006MuZX).
4613.79 8	(5)#		н		
4614.35 8	(4) [#]		н		J^{π} : Other: (6) (2006MuZX).
4614 40 8	$(3)^{\#}$		н		I^{π} : Other: (5) (2006MuZX)
4616.73 8	(3)		H		
4620.28 8	(5) [#]		Н		
4622.07 8	(6) [#]		н		J^{π} : Other: (4) (2006MuZX).
4622.47.8	(5) [#]		н		
4625 50 8	$(5)^{\#}$		н		I^{π} : Other: (3) (2006MuZX)
4625.68.8	$(4)^{\#}$		н		
1625.00 0	(1) (5) [#]		и		
4627.72.8	(5)		и и		
4965 1 19	(0) (19^{-})		п	N	I^{π} : 371 γ to (17 ⁻)
5182.1 21	(1))			N	
5478.1 24				N	
5748.1 21				N	
5845.1 24				N	
5990 <i>3</i> v±5006		0.1 m		N N	E(level) Type: Exact location of this isomer could not be determined
A+J770		0.1 118		И	One possibility, as mentioned in 2014Ci03, was missing the low-energy transitions in the deexcitation cascades due to high

²¹⁰Bi Levels (continued)

E(level) [†]	Jπ‡	T1/2	XREF	Comments
()		1/2		internal conversion and low detection efficiency. However, 2014Ci03 note the location of this isomer to be above 6000 keV.
 [†] Dedu witho (multi X²=2. [‡] Spin from variou are ur parity (2J+1 config # From [@] Main ^a Main ^a Main ^a Main ^a Main ^a Main ^f Main ^j Main ^j Main ^j Main 	ced by o ut uncer iply place 1, critic and pari (d,p), (³ is proton certain assignr). Assig guration. ²⁰⁹ Bi(r Configu	evaluato tainty. 8 wed) from al $\chi^2=1$ ty assig He,p), a n-neutro because nents de nments de nments de nments Addition= iration= iration= iration= iration= iration= iration= iration= iration= iration= iration= iration= iration= iration=	r from least 387.19γ (min 2910.06 l 2. nments are and (α ,d) reach in shell-mood is of the diffi- induced from from (α ,d) onal specific nances -20 ((π 1h _{9/2}) (((π 2f _{7/2}) (((π 2f _{7/2}) (((π 2f _{7/2}) (((π 1h _{9/2}) (((π 2f _{7/2}) (((π 1h _{9/2}) (((π 2f _{7/2}) (((π 1h _{9/2}) (((π 1h _{9/2}) (((π 2h _{7/2}) (((π 1h _{9/2}) (((π 2h _{7/2}) (((π 1h _{9/2}) (((π 2h _{7/2}) (((π 1h _{9/2}) (((π 2h _{7/2}) (((π 1h _{9/2}) (((π 2h _{7/2}) (((π 1h _{9/2}) (((π 1h _{9/2}) (((π 2h _{7/2}) (((π 1h _{9/2}) (((π 1h _{9/2}) (((π 2h _{7/2}) ((π 1h _{9/2}) (((π 1h _{9/2}) (((π 1h _{9/2}) (((π 2h _{7/2}) ((π 1h _{9/2}) (((π 1h _{9/2}) ((π 1h _{9/2}) (((π 1h _{9/2}) ((π 1h _{9/2}) (((π 1h _{9/2}) ((π 1h _{9/2}) (((π 1h _{9/2}) ((π 1h	squares fit to γ rays, except otherwise noted. $\Delta E=1$ keV uncertainty is assumed for γ rays ltiply placed) from 2072.49 keV level, 1733.3 γ and 1761.5 γ from 2079 keV level, and 903.13 γ eV level were ignored in the least-square fit – deviated by more than 4 σ from fitted values. based on γ -ray decay patterns in (n, γ) and (d,p γ) reactions; on L-values and transition strengths ctions; and on a comparison of experimental level energies with calculated values for the el configurations (1972He03,1981LoZZ). Most of the L-values from (d,p) and (³ He,p) reactions oulty to determine the relative contributions from transitions with different L-values. Spin and these reactions are also based on the assumption that transition strengths are proportional to eactions assume preferential excitations to J(max)=J(p)+J(n) for the dominant proton-neutron arguments are given with individual levels. 06Do20 quoted spin and parity assignments from literature. $(2g_{9/2})$) (All covfigurationsfrom(n Γ) – 1989Sh20). $(1i_{11/2})$). $(2g_{9/2})$). $(1j_{15/2})$). $(2g_{9/2})$). $(1j_{15/2})$). $(2g_{9/2})$). $(1j_{15/2})$). $(1j_{15/2})$). $(1j_{15/2})$). $(2g_{7/2})$).
^{<i>k</i>} Main	Configu	aration=	$((\pi 1h_{9/2}))$	⁺ 3d _{3/2})).
				γ ⁽²¹⁰ Bi)
F.(level)	Iπ	E	.† 1	$\frac{1}{2}$ E.c. I^{π} Mult $\alpha^{@}$ Comments

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]
46.5390	0-	46.539 1	100	0.0	1-	M1	18.7
319.73	2^{-}	319.73 5	100	0.0	1-		
347.95	3-	(28.2 <i>CA</i>)	1.3	319.73	2^{-}		
		347.91 ^{&} 6	100	0.0	1-		
433.48	7-	162.19 ^{&} 5	100	271.31	9-		
439.24	5-	(5.8 <i>CA</i>)		433.48	7-		
502.84	4-	91.32 <mark>&</mark> 8 63.67 8	100 8 4	347.95 439.24	3- 5-		
		154.85 ^{&} 7	100 3	347.95	3-		
550.04	(-	182.94 10	12.5 8	319.73	2-		
550.04	6	110.79 /	85 19	439.24	2		
560.16	(1-)	116.50 ^{cc} 6	100 9	433.48	7-		
563.16	(1^{-})	516.6 5	44 22	46.5390	0-		

18.7	E_{γ} , I_{γ} , Mult.: from ²¹⁰ Pb β^- decay.
	From ²⁰⁹ Bi(d,p γ). γ ray not observed, but inferred from transition-intensity balance.

 γ ray not observed. Existence inferred from $\gamma\gamma$ coin in $^{209}{\rm Bi}({\rm d,p}\gamma).$

γ ⁽²¹⁰Bi) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
563.16	(1^{-})	563.24 ^{&} 6	100 22	0.0	1-		
582.54	8-	148.99 <mark>&</mark> <i>12</i>		433.48	7-		
		311.25 <mark>&</mark> 7		271.31	9-		
669.0	10^{-}	397.7 [‡] 5	100	271.31	9-		
916.11	8-	482.46 <mark>&</mark> 16		433.48	7-		
		644.51 <mark>&</mark> 9		271.31	9-		
971.92	(2 ⁻)	408.78 6	100 25	563.16	(1^{-})		
		623.84 ^{&} 10	<25	347.95	3-		
		971.89 ^{&} 8	80 16	0.0	1-		I_{γ} : Branching: Iγ(972γ)/Iγ(408γ)=0.35 14 ((d,pγ) – 1973Ca11).
993.72	(3 ⁺)	490.89 ^{&} 7	<5.1	502.84	4-		
		645.81 7	18.4 16	347.95	3-		
	(4 -)	673.98 5	100 5	319.73	2-		
1164.64	(1)	601.5°° 3		563.16	(1)		
1155.00	(2-)	1118.08 14		46.5390	0-		
11/5.33	(2)	827.24 ^{cc} /		347.95	3		
		855.49° 10		319.73	2		
1104.15	(0-)	$11/5.4 \approx 8$.26	0.0	1		
1184.15	(8)	$601.5 \ 3$ 634.02.12	<30 100 <i>16</i>	582.54 550.04	8 6 ⁻		
		$750 44 \frac{2}{20}$	<30	133.48	7-		
		91274° 9	<150	271 31	0- 0-		
1208 41	(6^{-})	705.25° 13	<16	502.84	4-		
1200.11	(0)	769.27 6	100 5	439.24	5-		
		775.01 ^{&} 5	<172	433.48	7-		
1248.04	(4 ⁻)	808.85 ^{&a} 5	<186	439.24	5-		
		900.11 <mark>&</mark> 8	100 20	347.95	3-		
1300.61	(7 ⁻)	116.47 ^{&} 5		1184.15	(8 ⁻)		
		384.18 9	100 7	916.11	8-		
		718.2 [°] 3	<18	582.54	8-		
		750.44° 20	<55	550.04	6-	щ	
1322.2	(11^{+})	653 #		669.0	10-	(E1)#	
		1051"		271.31	9-		
1335.71	(5^{-})	785.75 [°] 24		550.04	6-		
		832.70° 17		502.84	4-		
1000 00		896.36 8		439.24	5		
1339.33	(6 ⁻)	91.32 ^{cc} 8		1248.04	(4 ⁻)		
		788.79 ^{cc} 24		550.04	6 ⁻		
1373.99	(3 ⁻)	402.03 7	100 7	439.24 971.92	5 (2 ⁻)		
		871.03 ^{&} 15	<32	502.84	4-		
1382.34	(7 ⁻)	466.8 ^{&} 3		916.11	8-		
		799.4 ^{&} 5		582.54	8-		
		832.70 2 17		550.04	6-		
1390.00	(4 ⁻)	214.78 ^{&} 8		1175.33	(2 ⁻)		
		887.19 ^{&} 15		502.84	4-		

					$\gamma(-\mathbf{D})$
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
1390.00	(4 ⁻)	950.82 ^{&} 11		439.24	5-
1462.83	(5 ⁻)	162.19 ^{&} 5		1300.61	(7 ⁻)
		214.78 ^{&} 8	<188	1248.04	(4 ⁻)
		254.74 14	100 22	1208.41	(6 ⁻)
		912.74 2 9	≤172	550.04	6-
		960.6 ^{&} 2	<28.2	502.84	4-
1473.1	(12^{+})	151#	100	1322.2	(11^{+})
1475.85	(3 ⁻)	311.25 7		1164.64	(1^{-})
		912.74 ^{&} 9		563.16	(1^{-})
		1156.39 ^{&} 11		319.73	2-
1478.90	(9 ⁻)	808.85 ^{&a} 5		669.0	10^{-}
		896.36 8		582.54	8-
1523.30	(4^{+})	148.99 ^{&} 12		1373.99	(3 ⁻)
		1020.4 ^{&} 3		502.84	4-
		1175.47 8		347.95	3-
1531.12	(2^{+})	968.5 ^{&} 4		563.16	(1^{-})
		1211.3 2		319.73	2^{-}
		1531.0 ^{&} 3		0.0	1-
1585.24	(2 ⁻)	1237.7 [‡] <i>3</i>	93 [‡] 5	347.95	3-
		1585.22 ^{&} 10	100	0.0	1-
1706.54	(5 ⁺)	1156.39 ^{&} 11		550.04	6-
		1203.54 ^{&} 18		502.84	4-
		1267.1 12		439.24	5-
1753.5	(10^+)	1482.2° 4	100	271.31	9 ⁻
1770.38	(0,)	1220.25 16	557 10021	439.24	0 5 ⁻
		$1342.5^{\&}$ 6	<1.5	433.48	5 7-
1793 41	(8^{+})	$1211.3^{\&}.3$	<186	582.54	, 8 ⁻
1795.11	(0)	1360.4 3	100 24	433.48	7-
1837.06	(7^{+})	629.0 5	57 29	1208.41	(6 ⁻)
		1286.72 20	100 29	550.04	6-
		1397.84 7	<786	439.24	5-
1896.84	(3^{+})	903.13 ^{°°} 18		993.72	(3 ⁺)
1006.02	(0-)	1576.6 ^{x} 7	40.12	319.73	2^{-}
1890.93	(9)	390.3 3 1625 85 <i>11</i>	40 12	271.31	(/) 9 ⁻
1924 40	(2^{-})	339 4 3	54 8	1585 24	(2^{-})
1724.40	(2)	1362.2% 5	64 6	563.16	(2^{-})
		$1576.6^{\&}$ 7	54 21	347.95	3-
		1604.8^{\ddagger} 3	$100^{\ddagger} 21$	319.73	2-
		1924 9 5	48^{\ddagger} 7	0.0	1-
1980 33	(7^{-})	186.3 & 3	<400	1793 41	(8^+)
1700.55	(7)	$644.51^{\&}$ 9	<500	1335 71	(5^{-})
		772.34 13	100 33	1208.41	(6 ⁻)
		1064.10 ^{&} 14	<154	916.11	8-
		1397.84 <mark>&</mark> 7	<300	582.54	8-
		1430.32 ^{&} 7	<367	550.04	6-

 $\gamma(^{210}\text{Bi})$ (continued)

$\gamma(^{210}\text{Bi})$ (continued) E_{γ}^{\dagger} I_{γ}^{\dagger} E_i(level) J_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} 1546.59[&] 24 1980.33 <107 433.48 7- (7^{-}) 1708.99<mark>&</mark> 8 9-<760 271.31 (3^{-}) 610.94 15 1984.71 100 20 1373.99 (3^{-}) 1012.68[&] 10 <309 971.92 (2^{-}) 1482.2[&] 4 <49 502.84 4-1665.27[&] 25 2^{-} <55 319.73 466.8[&] 3 <222 1523.30 (4^{+}) 1990.18 (3^{-}) 1018.2 4 100 33 971.92 (2^{-}) 1550.8[‡] 3 <364[‡] 5^{-} 439.24 1642.10[&] 20 <211 347.95 3-1-1990.0 11 67 22 0.0 623.84[&] 10 (8-) 2005.99 1382.34 (7^{-}) 705.25[&] 13 1300.61 (7^{-}) 1423.33[&] 11 582.54 8- (4^{+}) 299.10 23 1706.54 (5^{+}) 2006.25 61 6 632.4 4 20 6 1373.99 (3^{-}) 758.37[&] 24 <26 1248.04 (4^{-}) 1012.68 & 10 <235 993.72 (3^{+}) 1503.1[&] 4 502.84 4-<26 5-1567.1 5 11 4 439.24 3-1658.22 11 100 22 347.95 6-2015.55 (6^{+}) 1465.44 10 100 24 550.04 1576.6[&] 7 5-<31 439.24 7-433.48 1582.9 3 41 7 1032.76[&] 13 2026.69 (1^{+}) <48 993.72 (3^{+}) 1054.96[&] 13 <87 971.92 (2^{-}) 1980.5 3 32 10 46.5390 0-2025.9 5 100 26 1^{-} 0.0 644.51[&] 9 2034.27 (5^{-}) <188 1390.00 (4^{-}) 1483.97 9 100 20 550.04 6-1531.0[&] 3 <35 502.84 4-1594.9[‡] 2 40[‡] 2 5-439.24 1601.0[&] 12 <35 433.48 7-1686.5[‡] 3 21[‡] 2 347.95 3-887.19[&] 15 (9⁺) <750 1184.15 2072.51 (8^{-}) 1156.39[&] 11 <1650 916.11 8-1800.2 14 9-100 50 271.31 154.85[&] 7 (4^{-}) 2079.18 1924.40 (2^{-}) 705.21[&] 13 <472 1373.99 (3^{-}) 871.03[&] 15 <186 1208.41 (6^{-}) 903.13[&] 18 <214 1175.33 (2^{-}) 1085.6[&] 6 <86 993.72 (3^+) 1576.6 % 7 <129 502.84 4-5-1640.06100 45 439.24 1733.3[‡] 2 347.95 3-1761.5[‡] 2 319.73 2^{-} 64.92[&] 6 2099.30 (5^{-}) <89 2034.27 (5^{-}) 392.82 6 (5^{+}) 87 20 1706.54

 $\gamma(^{210}\text{Bi})$ (continued)

I_{γ}^{\dagger} E_{γ} E_i(level) J^{π} \mathbf{E}_{f} J_f^{π} 575.91[&] 11 2099.30 <78 1523.30 (4+) (5^{-}) 623.84[&] 10 <38 1475.85 (3-) 890.72 18 1208.41 (6-) 12 4 1596.37 23 100 20 502.84 4-1665.27[&] 25 <19 433.48 7-1430.32[&] 7 (11^{+}) 2099.4 100 669.0 10-1557.7 3 550.04 6-2108.33 100 31 (6^{-}) 1668.82 16 94 25 439.24 5-1675.5[‡] 2 47[‡] 5 433.48 7-154.85[&] 7 2135.14 (7^{-}) 1980.33 (7-) 799.4[&] 5 1335.71 (5-) 950.82[&] 11 1184.15 (8-) 1585.22[&] 19 550.04 6-1695.55[&] 15 439.24 5-1701.7[&] 8 433.48 7-968.5<mark>&</mark> 4 2177.25 (4^{-}) 1208.41 (6-) 1675.2[‡] 8 37[‡] 20 502.84 4-1738.3[‡] 2 100[‡] 8 439.24 5-1829.3[&] 4 347.95 3-775.01[&] 5 2237.81 (6^{-}) <1487 1462.83 (5⁻) 855.49[&] 16 1382.34 (7-) <178 1321.74 14 100 13 916.11 8-1798.25 13 43 13 439.24 5-1804.2 8 179 433.48 7-186.3[&] 3 (7^{+}) 2258.88 $2072.51 (9^+)$ 482.46 % 16 1776.38 (6+) 1074.29[&] 18 1184.15 (8-) 1342.5[&] 6 916.11 8-1708.99 & 8 550.04 6-1825.35[&] 7 433.48 7-1764.89 22 2314.14 (6^{-}) 50 17 550.04 6-1874.91[&] 16 <133 439.24 5-1880.55 16 100 25 433.48 7-347.91[&] 6 2525.14 (4^{-}) 2177.25 (4-) 490.89[&] 7 2034.27 (5-) 1531.0[&] 3 993.72 (3+) 2022.2[‡] 3 502.84 4-2085.7[‡] 3 439.24 5-2177.0[‡] 3 347.95 3-

2578.75	(5 ⁻)	563.22 <mark>&</mark> 8		2015.55	(6+)
		1116.9 6		1462.83	(5 ⁻)
		2029.1 [‡] 3		550.04	6-
		2076.4 [‡] 3		502.84	4-
		2140.3 [‡] 5		439.24	5-
2610.10	(4 ⁻)	575.91 ^{&} 11	<988	2034.27	(5 ⁻)
		713.21 25	100 25	1896.84	(3^+)
		903.13 ^{&} 18	<188	1706.54	(5^+)

				-	γ(²¹⁰ B1)	(contin
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.
2610 10	(4^{-})	1362.2 & 5	<175	1248.04	(4^{-})	
2010.10	(.)	$21714^{\ddagger}4$	1115	439.24	5-	
		2262.29 ^{&} 17	<463	347.95	3-	
		2202.29 1%	<175	319.73	2-	
2724 07	(8^{+})	718.2% 3	<117	2005.99	(8^{-})	
2721.07	(0)	827.24 ^{&} 7	<667	1896.93	(0^{-})	
		$1423 33^{\circ} 11$	<417	1300.55	(7^{-})	
		1806.9 7	100 33	916.11	8-	
		2290.1 ^{&} 3	<233	433.48	7-	
2725.3	(14^{-})	1252 [#]		1473.1	(12^{+})	
		1403 [#]		1322.2	(11^+)	[E3]
2737.19	(8 ⁻)	601.5 ^{&} 3	<35	2135.14	(7 ⁻)	
	. ,	900.11 <mark>&</mark> 8		1837.06	(7^{+})	
		943.91 9	100 23	1793.41	(8+)	
		1397.84 ^{&} 7	<145	1339.33	(6 ⁻)	
		2154.8 [‡] 10		582.54	8-	
		2465.3 [‡] 3		271.31	9-	
2758.96	(6+)	623.84 <mark>&</mark> 10	<380	2135.14	(7-)	
		1376.5 4	100 60	1382.34	(7 ⁻)	
		1423.16 25	<220	1335.71	(5 ⁻)	
		2325.9 10	<210	433.48	7-	
2764.97	(3 ⁺)	758.37 24		2006.25	(4^{+})	
		868.3 8		1896.84	(3 ⁺)	
		2262.29 17		502.84	4-	
		2416.9 <mark>&</mark> ‡ 7		347.95	3-	
2765.16	(3 ⁻)	186.3 × 3		2578.75	(5 ⁻)	
		758.37 24		2006.25	(4+)	
		775.01 5		1990.18	(3 ⁻)	
		868.3 & 8		1896.84	(3 ⁺)	
		1601.0 ^{&} 12		1164.64	(1 ⁻)	
		2262.29 ^{&} 17		502.84	4-	
		2325.9 ^{&} 10		439.24	5-	
		2416.9 ^{&‡} 7		347.95	3-	
2818.00	(1 ⁻)	828.8 ^{&a} 9	<250	1990.18	(3 ⁻)	
		1342.5 <mark>&</mark> 6	<125	1475.85	(3 ⁻)	
		1642.10 ^{&} 20	<475	1175.33	(2 ⁻)	
		2470.9 ^{&} 3	<1250	347.95	3-	
		2771.9 8	100 50	46.5390	0^{-}	
2819.05	(4^{+})	828.8 ^{&a} 9	<111	1990.18	(3 ⁻)	
		1342.5 6	<56	1475.85	(3 ⁻)	
		1825.35 7	<845	993.72	(3 ⁺)	
		2315.9 8	100 33	502.84	4 ⁻ 5-	
		2319.4 4 2470 0 & 2	< 69	439.24	J 2-	
2810 16	(6^{-})	2470.9^{-2} 3 705.25 $\&$ 12	<220	547.95 2125 14	(7^{-})	
2040.40	(0)	105.25^{-1} 15		2155.14	(1)	
		1004.10 14		1//0.38	(0)	

$\gamma(^{210}\text{Bi})$ (continued)

$\gamma(^{210}\text{Bi})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Comments
2840.46	(6-)	2290.1 ^{&} 3		550.04	6-	E_{γ} : Other value: 2291.1 keV 5 (d,p γ).
		2402.0 [‡] 5		439.24	5-	
		2407.7 [‡] 5		433.48	7-	
2910.15	(7^{+})	186.3 ^{&} 3	<400	2724.07	(8^+)	
		775.01 ^{&} 5	<2280	2135.14	(7 ⁻)	
		903.13 ^{&} 18	<100	2005.99	(8 ⁻)	
		1116.9 6	<120	1793.41	(8+)	
		1203.54 18	<717	1706.54	(5^+)	
		1608.7 5	67 20	1300.61	(/)	
		1/01./~ 8	<53 100-27	916.11	$\binom{0}{8^{-}}$	
		2360.3 6	53 20	550.04	6-	
2921.15	(5 ⁻)	162.19 ^{&} 5		2758.96	(6^{+})	
		785.75 ^{&} 24		2135.14	(7-)	
		887.19 ^{&} 15		2034.27	(5 ⁻)	
		1397.84 ^{&} 7		1523.30	(4^{+})	
		1531.0 ^{&} 3		1390.00	(4 ⁻)	
		1585.22 ^{&} 19		1335.71	(5 ⁻)	
2966.46	(4 ⁻)	788.79 ^{&} 24		2177.25	(4 ⁻)	
		887.19 ^{&} 15		2079.18	(4 ⁻)	
		960.7 ^{&} 2		2006.25	(4^{+})	
		1503.1 ^{&} 4		1462.83	(5 ⁻)	
		1576.6 7		1390.00	(4-)	
		2528.57 9		439.24	5-	
3004.53	(2 ⁻)	186.3 × 3	<105	2818.00	(1^{-})	
		827.24 [°] 7	<70	2177.25	(4^{-})	
		1756.3.5	19 J 23 7	1248.04	(4^{-})	
		$1829.3^{\&} 4$	<13	1175.33	(2^{-})	
		1839.81 8	100 21	1164.64	(1-)	
		2032.4 3	16 5	971.92	(2-)	
3010.86	(2 ⁻)	1020.4 × 3		1990.18	(3 ⁻)	
		1085.6 ^{cc} 6		1924.40	(2 ⁻)	
		1835.76 ^{°°} 21		1175.33	(2-)	
3039.56	(3 ⁻)	960.7 ^{cc} 2		2079.18	(4 ⁻)	
		1054.96 13		1984.71	(3^{-})	
		15/6.6 7		1462.83	(5 ⁻)	
		1665.27° 25		13/3.99	(3)	
		$18/4.91 \sim 10$		502.84	(1)	
		$2535.0^{+} 5$		502.84	4	
		$2399.3^{\circ} 3$		439.24	3 2-	
3060 54	(A^{-})	2091.173		3004 52	(2^{-})	
5007.34	(4)	490 80 80 7		2578 75	(2) (5^{-})	
		1362.09 7		1706 54	(5^+)	
		1546 59 ^{&} 21		1523 30	(3^{+})	
		1570.57 24		1525.50	(,	

$\gamma(^{210}\text{Bi})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.
3069.54	(4 ⁻)	1695.55 <mark>&</mark> 15		1373.99	(3-)	
3108.53	(5 ⁻)	871.03 ^{&} 15	<217	2237.81	(6 ⁻)	
		1009.9 4	100 33	2099.30	(5 ⁻)	
		1074.29 ^{&} 18	<233	2034.27	(5 ⁻)	
		1118.08 14	<317	1990.18	(3 ⁻)	
		1332.5 4	67 33	1776.38	(6')	
		1585.22 ^{cc} 19	<333	1523.30	(4')	
2141.22	(\overline{a})	26/4.2# 5	.000	433.48	/	
3141.32	(6)	827.24 ^{cc} /	<286	2314.14	(6)	
		903.13 ^{cc} 18	<107	1980.33	(6) (7^{-})	
		2591.3 ± 4	100 50	550.04	(<i>i</i>) 6 ⁻	
		2391.3 + 10		439.24	5-	
		$2702.1 \ 10$ $2708 \ 2^{\ddagger} \ 4$		433.48	5 7-	
3182.5	(4^{-})	2679 7 [‡] 5	$100^{\ddagger} 35$	502.84	4-	
5102.5	(1)	2743 3	93	439.24	5-	
		$28345^{\ddagger}10$	33 [‡] 6	347.95	3-	
3209 75	(5^{-})	971 89 ^{&} 8	55 0	2237.81	(6^{-})	
5207.15	(5)	$1032.76^{\&}$ 13		2177.25	(4^{-})	
		$1074.29^{\&}$ 18		2135.14	(7^{-})	
		1175.47 ^{&} 8		2034.27	(5^{-})	
		1203.54 ^{&} 18		2006.25	(4^+)	
		1503.1 ^{&} 4		1706.54	(5 ⁺)	
		1835.76 ^{&} 21		1373.99	(3 ⁻)	
		1909.02 ^{&} 23		1300.61	(7-)	
		2862.3 [‡] 8		347.95	3-	
3244.63	(7 ⁻)	1209.7 <i>3</i>	100 33	2034.27	(5 ⁻)	
		1264.2 7	44 17	1980.33	(7 ⁻)	
		1909.02 [°] 23	<106	1335.71	(5 ⁻)	
		2695.9+ 5		550.04	6-	
		2805.8+ 6	(7.22	439.24	5-	
2204-1	(12^{+})	2810.9 J	100	433.48	/ (12+)	
3294.1	(15)	1021	100	14/3.1	(12)	(E2)#
3409.2	(15)	175 744 [#]		5294.1 2725 3	(13)	(E2)
4030.2	(16^{+})	561 [#]	100	2725.5	(14)	(L1)
4030.2	(10^{-})	1360 [#]	100	2725.3	(13^{-})	
+005.0	(14)	2613 [#]		1/73 1	(17) (12^+)	
4239 1	(15^{-})	153 [#]		4085.8	(12^{-})	
7237.1	(15)	1514 [#]		2725.3	(14^{-})	
4463 1	(16^{-})	224 [#]	100	4239.1	(11^{-})	
4594 1	(10^{-})	131#	100	4463 1	(15^{-})	
	(1)	564 [#]		4030.2	(16^+)	
4965.1	(19 ⁻)	371 [#]	100	4594.1	(17^{-})	
5182.1	()	217 [#]	100	4965.1	(19 ⁻)	
5478.1		296 [#]	100	5182.1	/	

 $\gamma(^{210}\text{Bi})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
5748.1		783 [#]	100	4965.1	(19 ⁻)
5845.1		663 [#]	100	5182.1	
5996		518 [#]	100	5478.1	

[†] From ²⁰⁹Bi(n,γ) E=thermal, unless otherwise specified. Upper limits are given for photon branchings affected by multiple placement.

[#] From ²⁰⁹Bi(d,pγ) (1973Pr11). [#] From (²⁰⁸Pb,Xγ).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

& Multiply placed.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{210}_{\ 83}{\rm Bi}_{127}$

Legend

Level Scheme (continued)

²¹⁰₈₃Bi₁₂₇

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{210}_{\ 83}{\rm Bi}_{127}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

²¹⁰₈₃Bi₁₂₇

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{210}_{\ 83}{\rm Bi}_{127}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{210}_{\ 83}{\rm Bi}_{127}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{210}_{\ 83}{\rm Bi}_{127}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

_ _

Level Scheme (continued)

Intensities: Relative photon branching from each level

