Type	History		
Full Evaluation	Author	Citation	Literature Cutoff Date
M. Shamsuzzoha Basunia			

Others: 1983Sh09, 1979Wu09.
Magnetic spectrograph resolution $=26$ or 47 keV (FWHM).
$\left(\alpha,{ }^{3} \mathrm{He}\right)$ reaction strongly favors high-L transfers. $\sigma(\mathrm{d}, \mathrm{p}) / \sigma\left(\alpha,{ }^{3} \mathrm{He}\right)$ ratios data are used to discern between $\mathrm{L}=6$ and $\mathrm{L}=7$ transfers.

$$
{ }^{210} \mathrm{Bi} \text { Levels }
$$

E(level)	J^{π} @	L	$\mathrm{C}^{2} \mathrm{~S}^{\prime \#}$	Comments
$665^{\dagger} 2$	10^{-}	6	2.1 CA	
991* 3	3^{+}	7	0.7 CA	
$1178{ }^{\dagger} 2$	$\left(9^{-}, 2^{-}\right)$	6	2.8	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=2.4$ theory.
$1334{ }^{\dagger} 3$	$5^{-}, 7^{-}$	6	3.25	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=2.6$ theory.
$1384^{\dagger} 2$	$\left(8^{-}, 3^{-}\right)$	(6)	2.9	E(level): doublet of 1373,1384 states. $\mathrm{C}^{2} \mathrm{~S}^{\prime}=2.4$ theory.
$1458^{\dagger} 5$	$\left(4^{-}, 6^{-}\right)$	6	2.5	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=2.2$ theory.
1470 ${ }^{\ddagger}$	12^{+}	7	2.6	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=2.5$ theory.
1522*3	$\left(4^{+}\right)$	7	1.2	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=0.9$ theory.
$1701^{\ddagger} 2$	5^{+}	7	1.15	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=1.1$ theory.
$1746^{\ddagger} 1$	10^{+}	7	2.36	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=2.1$ theory.
1771 * 4	$\left(6^{+}\right)$	(7)	1.37	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=1.3$ theory.
1799\#3	$8^{+}, 11^{+}$	7	3.0	E(level): $8^{+}, 11^{+}$at $1812,1801 \mathrm{keV}$, respectively, via (d,p). $\mathrm{C}^{2} \mathrm{~S}^{\prime}=1.7$ theory for 8^{+}.
$1831{ }^{\ddagger} 4$	7^{+}	(7)	1.6	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=1.5$ theory.
2072 ${ }^{\ddagger} 10$	9^{+}	7	2.3	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=1.9$ theory.
$2110^{\ddagger} 10$	$\left(11^{+}\right)$	7	1.37	$\mathrm{C}^{2} \mathrm{~S}^{\prime}=2.3$ theory; $\mathrm{L}=7,11^{+}$strength is split between 1799,2110 levels.
${ }^{\dagger}$ Configuration $=\left(\left(\pi 1 \mathrm{~h}_{9 / 2}\right)\left(v \mathrm{ii}_{11 / 2}\right)\right) ; \mathrm{L}=6$ transfer with summed $\mathrm{C}^{2} \mathrm{~S}^{\prime}=13.9$ if 1^{-}strength=0.3. ${ }^{*}$ Configuration $=\left(\left(\pi 1 \mathrm{~h}_{9 / 2}\right)\left(v \mathrm{j}_{15 / 2}\right)\right)$; $\mathrm{L}=7$ transfer with summed $\mathrm{C}^{2} \mathrm{~S}^{\prime}=17.7$. \# Normalized to predicted strength of $10^{-}, 3^{+}$states from stripping sum rules and summed $C^{2} S^{\prime}=12,16$, respectively. ${ }^{@}$ Based on $\mathrm{C}^{2} \mathrm{~S}^{\prime}$ (exp vs calc) proportional to $2 \mathrm{~J}+1$ for multiplet members, and theoretical calc of level energies.				

