²⁰Ne(n,n),(n,γ):res 2014He25

History				
Туре	Author	Ċitation	Literature Cutoff Date	
Full Evaluation	R. B. Firestone	NDS 127, 1 (2015)	15-Jan-2015	

99.8% enriched ²⁰Ne gas target in stainless steel cylinder at 150 atmospheric pressure. Neutrons were produced from ⁷Li(p,n)⁷Be reaction with a pulsed proton beams of 1.0 ns width and a variable repetition rate of 1 MHz and 250 MHz for the capture and transmission runs. E=5 to 800 keV. Neutrons were detected using two C_6D_6 liquid scintillation detectors, neutron energy resolution was 0.2 and 1.5 keV at 20 and 200 keV, respectively. Neutron capture events were detected using the C_6D_6 detectors in combination with the pulse height weighting technique. The resonances in the capture cross sections were identified and analyzed using the multilevel R-matrix code SUMMY. Deduced Maxwellian-averaged cross sections (MACS) for steller (n, γ) from 5 to 100 kT (keV). At kT=30 keV thermal energy, MACS value is 240 μ b 29 for ²⁰Ne.

²¹Ne Levels

E(level) [†]	$J^{\pi \ddagger}$	L‡	Comments	
6901.48 <i>16</i>	1/2-	1	Γ_{γ} =3.7 eV 2; Γ_{n} =861 eV 29 Resonance energy (lab)=147.40 keV 15.	
7211.1 5	1/2+	0	$\begin{split} &g=(2J(res)+1)/((2I_n+1)(2I(^{20}Ne_{g.s.})+1))=1; \text{ not } 1/3 \text{ as listed in Table II of } 2014He25. \\ &\text{The strength of this resonance is } 80\% \text{ larger than that reported by } 1988Wi14. \\ &\Gamma_n=107.8 \text{ keV } 11 \\ &\text{Resonance energy } (lab)=472.6 \text{ keV } 5. \\ &g=(2J(res)+1)/((2I_n+1)(2I(^{20}Ne_{g.s.})+1))=1. \end{split}$	

[†] From $S_n(^{21}Ne)=6761.16 \ 4 \ (2012Wa38)+En(c.m. system)$.

[‡] From capture cross section fittings using the multilevel R-matrix code SAMMY.