²⁰Ne(n, γ) E=thermal

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	R. B. Firestone	NDS 127, 1 (2015)	15-Jan-2015				

EGAF (2007ChZX) and 1986Pr05 thermal neutron capture data have been combined to determine the complete decay scheme for 20 Ne(n, γ). The total neutron cross section determined by this evaluation is 56 mb *3* which is larger than previous values 37 mb *4* (1986Pr05), 45 mb *10* (1968Jo09), and 36.8 mb *45* (1971Be34).

²⁰ Ne(n	$,\gamma)$ intensit	y balance
E(Level)	$\sigma({ m feeding})({ m b})$	σ (de-exciting)(B)
0.0	0.056 3	
350.71	0.0335 6	0.0339 6
2788.71	0.00062 9	0.00061 11
2794.18	0.01415 24	0.014 3
3663.57	0.00019 5	0.00017 3
4684.47	0.00037 6	0.00029 12
4725.35	0.0424 16	0.0420 6
5689.81	0.00756 16	0.0082 3
5992.56	0.00034 5	0.00039 6
6761.11		0.0557 16

²¹Ne Levels

E(level)	\mathbf{J}^{π}	T _{1/2}
0.0	$3/2^{+}$	stable
350.71 4	$5/2^{+}$	
2788.71 10	$1/2^{-}$	81 ps 5
2794.18 <i>3</i>	$1/2^{+}$	
3663.57 7	$3/2^{-}$	
4684.47 21	$3/2^{+}$	
4725.35 <i>3</i>	$3/2^{-}$	
5689.81 4	$1/2^{-}$	
5992.56 8	3/2-	
6761.11 <i>3</i>		

$\gamma(^{21}\text{Ne})$

I γ normalization: Normalized assuming the decay scheme is complete and $\Sigma\gamma(g.s.)=100$.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f .	\mathbf{J}_f^{π}	Mult. ^{&}	δ	Comments
350.71 4	0.0339 6	350.71	5/2+	0.0 3,	3/2+	(M1+E2)	-0.074 4	I_{γ} : From 2007ChZX value adjusted for 6% absorption in the target.
768.53 7	3.4×10^{-4} 5	6761.11		5992.56 3	$3/2^{-}$	E1		
869.37 [#] 11	7×10 ^{-6#} 3	3663.57	3/2-	2794.18 1	$/2^{+}$			
874.84 [#] 11 964.44 4	$6.2 \times 10^{-5\#} 22$ 0.00048 6	3663.57 5689.81	3/2 ⁻ 1/2 ⁻	2788.71 1, 4725.35 3,	/2 ⁻ 3/2 ⁻	-		
$1071.27 \ 4$ $1890.20^{\#} \ 21$ $1021.07 \ 4$	$0.00756 \ 16$ $1.2 \times 10^{-5\#} \ 5$	6761.11 4684.47	$3/2^+$	5689.81 1, 2794.18 1,	$1/2^{-}$ $1/2^{+}$	E1		
2035.65 <i>3</i>	0.00966 17 0.0419 16	4725.35 6761.11	3/2	4725.35 3,	8/2 ⁻	E1		I_{γ} : Intensity increased by 8% on the basis of intensity balance de-exciting the capture state to the 4725-keV level.

				20 Ne(n, γ) E=th	ermal (conti	nued)	
$\gamma(^{21}\text{Ne})$ (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ	Comments
2076.53 21 2437.84 10 2788.51 [#] 10	3.7×10 ⁻⁴ 6 0.00054 11 7.3×10 ^{-5#} 11	6761.11 2788.71 2788.71	1/2 ⁻ 1/2 ⁻	4684.47 350.71 0.0	3/2 ⁺ 5/2 ⁺ 3/2 ⁺	M1 (M2+E3)	+0.12 3	
2793.98 <i>3</i> 2895.41 <i>4</i> 3097.29 <i>7</i>	$\begin{array}{c} 0.014 \ 3 \\ 0.00424 \ 17 \\ 1.9 \times 10^{-4} \ 5 \end{array}$	2794.18 5689.81 6761.11	1/2+ 1/2-	0.0 2794.18 3663.57	3/2+ 1/2+ 3/2-	E1		
3312.57 [@] 8 3966.52 [@] 4 3971.99 <i>10</i>	$1.0 \times 10^{-4} @ 3$ $2.3 \times 10^{-4} @ 3$ 0.00056 9	3663.57 6761.11 6761.11	3/2-	350.71 2794.18 2788.71	5/2 ⁺ 1/2 ⁺ 1/2 ⁻	E1 E1		
4333.27 20 4374.14 4 4683.91 [#] 21	$2.6 \times 10^{-4} 12 \\ 0.0323 6 \\ 1.6 \times 10^{-5\#} 6$	4684.47 4725.35 4684.47	3/2 ⁺ 3/2 ⁻ 3/2 ⁺	350.71 350.71 0.0	5/2+ 5/2+ 3/2+			
4724.78 [@] 3 5641.04 8	8.2×10 ⁻⁵ ^(a) 12	4725.35 5992.56	3/2 ⁻ 3/2 ⁻	0.0 350.71	3/2 ⁺ 5/2 ⁺			I _{γ} : Expected transition from Adopted Levels, Gammas with 54 % 5 of 5992 γ intensity is inconsistent with intensity balance
5688.98 <i>4</i> 5991.65 8 6409.34 [@] <i>4</i> 6759.94 <i>3</i>	$\begin{array}{c} 0.00345 \ 22 \\ 3.9 \times 10^{-4} \ 6 \\ 2.9 \times 10^{-4} \ @ \ 4 \\ 0.00424 \ 22 \end{array}$	5689.81 5992.56 6761.11 6761.11	1/2 ⁻ 3/2 ⁻	0.0 0.0 350.71 0.0	3/2 ⁺ 3/2 ⁺ 5/2 ⁺ 3/2 ⁺	E2 M1		

[†] Average of 2007ChZX and 1986Pr05 data. Energies least-squares fit to the level scheme.

[‡] Ne thermal neutron capture γ -ray cross sections (b). The relative elemental intensity of the 4374-keV γ -ray in ²¹Ne is normalized ²²Ne isotopic cross sections for the 1017-keV (38.6 mb 3), 1980-keV (39.3 mb 3) and 2204-keV (32.3 mb 3) γ -rays in ²³Ne (2009BeZQ) after correction for isotopic abundances. The weighted average γ -ray cross section σ (4374)=32.3 mb 8.

[#] Transition expected from Adopted Levels, Gammas.

[@] From 1986Pr05.

& For primary γ -rays from initial and final level J^{π} values.

^a For intensity per 100 neutron captures, multiply by 1785.7.

ω

 $^{21}_{10}$ Ne $^{11}_{11}$ -3

From ENSDF

 $^{21}_{10}\mathrm{Ne}_{11}$ -3