12 C(13 C, α) **2010Fr04**

History					
Туре	Author	Ċitation	Literature Cutoff Date		
Full Evaluation	R. B. Firestone	NDS 127, 1 (2015)	15-Jan-2015		

E=20 MeV beam from IPN Orsay Tandem accelerator. Target=20 μ g/cm². The particles were detected with four double-sided Si strip detectors placed at different angles. FWHM≈350 keV. Measured (α)(particle) coincidences where either the ²¹Ne nucleus or the ²⁰Ne produced via neutron decay of the unbound state of ²¹Ne is detected, thus allowing states decaying by γ -rays and by neutrons to be separately observed. R-matrix analysis.

This experiment determined the neutron and γ decay channels, the high-spin states (J \geq 7/2) are expected to be connected with the γ decay channel only. The neutron decaying states are expected to be low spin.

 $S(n)(^{21}Ne)=6761.16 4$ (2011AuZZ). First 2⁺ in ²⁰Ne is at 1633.7 keV.

²¹ Ne	Levels
------------------	--------

E(level)	\mathbf{J}^{π}	Relative strength	Comments
0		1	
0.35×10 ³ 8		1.3	
$1.72 \times 10^3 8$		2.1	
$2.80 \times 10^3 8$		4.8	
$3.76 \times 10^3 8$		6.2	
$4.51 \times 10^3 8$		4.3	
$5.37 \times 10^3 8$		4.6	
$5.76 \times 10^3 8$		2.3	
$6.14 \times 10^3 8$		3.9	
$6.54 \times 10^3 8$		2.3	
$7.08 \times 10^{3} 8$		2.6	20
7.32×10 ³ 8	1/2+	2.2	Decays by neutrons to g.s. of 20 Ne. E(level),J ^{π} : This state associated with neutron decay, and identified with previously known 7211, 1/2 ⁺ state, and not to 7357, (7/2, 9/2 ⁺) level.
$7.40 \times 10^3 8$			
7.65×10 ^{3†} 8		0.2	
7.92×10 ³ † 8		1.7	
8.20×10 ³ * 8		2.8	
8.44×10 ³ 8		0.3	
$8.77 \times 10^3 8$		2.4	
8.90×10 ³ ‡ 8	$(5/2^+, 7/2^-)$	0.8	
9.27×10 ³ [‡] 8	$(5/2^+, 7/2^-)$	4.7	
9.82×10 ³ 8		4.0	Probably not a neutron decaying state since seen in all three decay spectra shown in 2010Fr04.
10.16×10^{3} 8	$(5/2^+, 7/2^-)$	0.6	
10.35×10 ³ 8		1.8	Possible an α decaying state, since no other decay pattern matches.
11.22×10 ³ 8		1.0	
11.69×10 ³ 8		0.2	

[†] Neutron decay to ²⁰Ne, 0⁺; the observed groups at 7.65, 7.92 and 8.20 MeV associated with 7627, $3/2^-$; 7979, $3/2^-$; 8008, $1/2^-$; 8065, $3/2^+$, and 8303, $3/2^-$ levels known earlier; whereas previously known states at 7982, $(7/2,11/2)^+$; 8155, $(9/2)^+$, and 8241, $(11/2)^+$ are linked with γ decay channel.

[‡] Neutron decay to 2^+ state in 2^{0} Ne, less pronounced in 2^{0} Ne, 0^+ decay.