¹²C(²²C,¹⁹B2n) 2018Le18

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	01-Jan-2019

2018Le18: XUNDL dataset compiled by TUNL, 2019.

- A beam of $E_{effective}=233$ MeV/nucleon (target midpoint) ²²C ions, from the RIKEN/RIBF facility, impinged on a 1.8 g/cm² carbon slate that was located at the target position of the SAMURAI spectrometer. The ¹⁹B reaction products were momentum analyzed using the SAMURAI focal plane, while the momentum of coincident neutrons were determined using the 120 module NEBULA plastic scintillator array. A prevalent peak near $E(2n+^{19}B)\approx 2.5$ MeV was observed in the relative energy spectrum, which was determined by analysis of invariant mass spectrum; note: the absence of ¹⁹B excited states simplifies the analysis. This is the first observation of any ²¹B resonance.
- The peak was fit by assuming a Breit–Wigner shape, which resulted in a resonance with $E(2n+^{19}B)=2.4 \text{ MeV } 4$ with $\Gamma<3$ MeV. The authors exploited a technique developed in (2016Ko11) that fitted the spectrum "with a combination of the uncorrelated distribution derived from event mixing and simulated events arising from the decay of a resonance in ²¹B. The latter was assumed to occur by (decay into the) three-body phase space into ¹⁹ β^+ n+n, and E_{rel} was reconstructed between the fragment and the neutron with the shortest time of flight." This method yielded $E(2n+^{19}B)=2.47$ MeV *19* with $\Gamma<0.6$ MeV.
- A comparison with Shell Model predictions suggest the ground state is formed via the removal of the $0p_{3/2}$ proton from ²²C, hence $J^{\pi} = (3/2^{-})$ is suggested.

²¹B Levels

E(level)	J^{π}	Г	Comments	
0	(3/2-)	<600 keV	E(level): From E(2n+ ¹⁹ B)=2.47 MeV 19, which implies Δ M=78.38 MeV 40. J^{π} : From Shell Model systematics.	

1