209 Hg β^- decay 1998Zh22

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013						

Parent: ²⁰⁹Hg: E=0.0; $J^{\pi}=(9/2^+)$; $T_{1/2}=36 \text{ s} +7-4$; $Q(\beta^-)=4990 SY$; $\%\beta^-$ decay=100.0

²⁰⁹Hg-Q(β^{-}): From 2012Wa38, $\Delta Q(\beta^{-})=150$.

1998Zh22 (also 1998Zh19): ²⁰⁹Hg produced in Pb(¹⁸O,X) at 600 MeV at the HIRFL facility in China. γ -rays were detected by a large BGO detector (FWHM=1.9 keV at E γ =1.33 MeV) and the β -particles were detected by a 25 mm-diameter plastic scintillators of the $4\pi\Delta E_{\beta}$ -type. Measured E γ , I γ , $\beta\gamma$ -coin. Deduced levels.

1998Zh22 constructed the level scheme for ²⁰⁹Tl from the γ -transitions based on the only fact that the timings of these transitions are all similar to that of the 324 γ in ²⁰⁹Tl. This makes these transitions except 324 γ questionable considering the possibility of wrong assignments. Also, if the parent has $J^{\pi} = (9/2^+)$, it should decay predominantly to the $J^{\pi} = (9/2^+)$ and $(7/2^+)$ levels at $E \approx 1000$ keV and $E \approx 1100$ keV in ²⁰⁹Tl, respectively, which will most probably feed the low-lying states, supporting the argument above. However, there could be another possibility, which can not be excluded, that these transitions could be from decays of an low-spin isomer in ²⁰⁹Hg instead of the $J^{\pi} = (9/2^+)$ ground state.

The decay scheme is incomplete, thus absolute γ - and β -ray emission probabilities, and log ft values were not deduced.

²⁰⁹Tl Levels

E(level) [†]	$J^{\pi \ddagger}$		
0.0	$1/2^{+}$		
324.0 4	$3/2^{+}$		
738.4 4			
946.6 8			
1748.2 6	$(5/2^+)$		

[†] From a least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\ddagger}	Comments
208.2 6 324.0 4	51 <i>16</i> 100	946.6 324.0	3/2+	738.4 0.0 1/2 ⁺	M1+E2	1.30 +23-19	0.174 18	α (K)=0.131 <i>16</i> ; α (L)=0.0330 <i>15</i> ; α (M)=0.0080 <i>3</i> α (N)=0.00202 <i>8</i> ; α (O)=0.000377 <i>17</i> ; α (P)=2.80×10 ⁻⁵ <i>25</i> Mult., δ : from Adopted Gammas.
738.4 <i>4</i> 1424.2 <i>4</i>	56 20 111 39	738.4 1748.2	(5/2+)	$\begin{array}{ccc} 0.0 & 1/2^+ \\ 324.0 & 3/2^+ \end{array}$				

 $\gamma(^{209}\text{Tl})$

[†] From 1998Zh22.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{^{209}}$ Hg-J^{π},T_{1/2}: From Adopted Levels of 209 Hg.

209 Hg β^- decay 1998Zh22

Decay Scheme

