¹⁹⁸Pt(¹⁶O,5nγ) **1985Po08**

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013

1985Po08: E=81-94 MeV ¹⁶O beams were produced from the ANU 14 UD Pelletron accelerator. Targets were enriched Pt foils. γ -rays were detected by three Ge(Li) detectors and one intrinsic Ge low-energy photon spectrometer (LEPS), conversion electrons were detected by a cooled Si(Li) detector and neutrons were detected by a NE213 liquid scintillator. Measured E γ , I γ , I(ce), $\gamma\gamma$ -coin, $\gamma\gamma$ (t), n γ -coin, n γ (t), $\gamma(\theta)$. Deduced levels, J^{π}, T_{1/2}, configurations, conversion coefficients, yrast states. Two other experiments were also performed for measurements of $\gamma(\theta)$ and conversion coefficients: ¹⁹⁸Pt(¹⁷O,⁶n γ) with E=87-95 MeV and ²⁰⁵Tl(¹⁰B,6n γ) with E=63-75 MeV.

²⁰⁹Rn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0	5/2-		configuration= $\nu (f_{5/2})^{-1}$.
707.00.10	0/2-		J^{n} : from Adopted Levels.
/9/.80 10	9/2 12/2+	12 1 us 12	configuration=dominant $v(f_{5/2})^{-1} \otimes \pi(h_{9/2})^{-1}_{2^{+1}}$.
11/5.98 15	13/2	$15.4 \ \mu 8 \ 15$	$r_{1/2}$: from 576.27(t) and 797.87(t). configuration= $\nu(i_{13/2})^{-1}$.
1465.53 <i>13</i>	$13/2^{-}$		
1561.55 14	$15/2^{-}$		
1610.67 <i>15</i>	$17/2^{-}$		
1687.41 15	19/2-	0.69 ns 21	$T_{1/2}$: from 76.75 γ (t) and 96.02 γ (t). configuration= $\nu(f_{5/2})^{-1} \otimes \pi(h_{0/2})^{+4}_{-4}$.
2238.16 17	$21/2^{-}$		(-3/2) $(-3/2)$ $(-3/2)$ $(-3/2)$
2418.71 18	$21/2^{+}$	8.73 ns 21	$T_{1/2}$: from 731.3 γ (t).
	1		configuration= $\nu(i_{13/2})^{-1} \otimes \pi(h_{9/2})^{+4}_{4+}$.
2501.29 18	23/2-		c · · · · · · · · · · · · · · · · · · ·
2744.15 21	$(23/2^+)$		
2848.48 18	$25/2^{-}$		
2864.6 <i>3</i>			
2957.58 18	$27/2^{-}$		
3049.9 4			
3157.48 21	29/2-	13.9 ns 21	T _{1/2} : from 199.9 γ (t). configuration= ν (p _{1/2}) ⁻¹ $\otimes \pi$ ((h _{9/2}) ⁺³ (f _{7/2}) ⁺¹) ⁴ _{1/4+} .
3400.6 <i>3</i>			
3539.9 <i>3</i>	$(27/2^+)$		
3636.78 23	35/2+	3.0 µs 3	$T_{1/2}$: from 479.3 γ (t) and 199.9 γ (t). configuration= $\nu(p_{1/2})^{-1} \otimes \pi((h_{0/2})^{+3}(i_{1/2/2})^{+1})_{i=1}^{4}$
3671.5 4	$(29/2^+)$		$\mathcal{S}^{(1)}$
3987.0 4	$(31/2^+)$		
4182.4 4	$(33/2^+)$		
4583.6 4	$(35/2^+)$		
4833.7 3	41/2-	10.0 ns 4	$T_{1/2}$: from 1196.9 γ (t). configuration= $\gamma(p_{1/2})^{-1} \otimes \pi((h_{0/2})^{+2}(i_{1/2/2})^{+2})_{2/2}^4$
4988.0 <i>4</i>	$(37/2^+)$		3^{-1} $(1^{-1})^{-1}$ $(1^{-1})^{-1}$ $(1^{-1})^{-1}$ $(1^{-1})^{-1}$
5216.9? 4	41/2+		E(level): The order of 383.2γ and 602.8γ is not well determined, and reversing the order of the two transitions would place a level of $J^{\pi}=(43/2^{-})$ at 5437 keV (1985Po08).
5819.8 4	$43/2^{+}$		
6538.0 5	$47/2^{+}$		
6772.1 6	$49/2^{+}$		
6826.1 6	49/2+		
7307.7 7	51/2		

[†] From a least-squares fit to $E\gamma$.

198 **Pt**(16 **O**,5n γ) 1985Po08 (continued)

²⁰⁹Rn Levels (continued)

[±] From 1985Po08, based on deduced γ-ray transition multipolarities. [#] $T_{1/2}$ <1.4 ns for all excited levels where no value is given explicitly (1985Po08).

γ (²⁰⁹ Rn)										
E _γ ‡	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments	
49.12 5	50	1610.67	17/2-	1561.55	15/2-	M1(+E2)	≤0.14		$\alpha(L)=16.8 \ 19; \ \alpha(M)=4.0 \ 5; \\ \alpha(N+)=1.31 \ 16 \\ \alpha(N)=1.05 \ 13; \ \alpha(O)=0.23 \ 3; \\ \alpha(P)=0.033 \ 3 $	
76.75 5	120	1687.41	19/2-	1610.67	17/2-	M1		5.51	Mult.: $\alpha(\exp)=22\ 2\ (1985Po08)$. $\alpha(L)=4.19\ 6;\ \alpha(M)=0.996\ 14;$ $\alpha(N+)=0.325\ 5$ $\alpha(N)=0.260\ 4;\ \alpha(O)=0.0568\ 8;$ $\alpha(P)=0.00830\ 12$ Mult.: $\alpha(\exp)=5.4\ 9$	
96.02 5	200	1561.55	15/2-	1465.53	13/2-	M1+E2	0.22 +10-17	3.2 4	(1985Po08). α (L)=2.42 24; α (M)=0.59 7; α (N+)=0.190 22 α (N)=0.152 18; α (O)=0.033 4; α (P)=0.0046 4	
109.10 7	≈20	2957.58	27/2-	2848.48	25/2-	M1(+E2)	≤0.16		Mult., δ : $\alpha(\exp)=3.2 \ 3$ (1985Po08). $\alpha(K)=6 \ 4$; $\alpha(L)=2.2 \ 12$; $\alpha(M)=0.5 \ 4$; $\alpha(N+)=0.18 \ 11$ $\alpha(N)=0.14 \ 9$; $\alpha(O)=0.030 \ 17$; $\alpha(P)=0.0039 \ 15$	
131.6 2	≈50	3671.5	(29/2+)	3539.9	(27/2+)	M1			Mult.: $\alpha(\exp) = 92$ (1985Po08). $\alpha(K) = 4.67 \ 20; \ \alpha(L) = 0.91 \ 4; \ \alpha(M) = 0.219 \ 11; \ \alpha(N+) = 0.071 \ 4$ $\alpha(N) = 0.057 \ 3; \ \alpha(O) = 0.0124 \ 6; \ \alpha(P) = 0.00178 \ 5$ Mult.: $\alpha(\exp) = 8 \ 1$ is larger than the calculated value for M1; A ₂ =-0.15 \ 5, A ₄ =-0.05 \ 5	
139.2 2	≈50	3539.9	$(27/2^+)$	3400.6					(1985Po08). A ₂ =+0.02 9, A ₄ =+0.12 9	
185.4 <i>1</i>	≈30	3049.9		2864.6					(1985P008). $A_2 = +0.205, A_4 = +0.035$	
195.4 <i>1</i>	100	4182.4	$(33/2^+)$	3987.0	$(31/2^+)$	M1(+E2)	0.6 5		(1985) (
199.9 <i>1</i>	130	3157.48	29/2-	2957.58	27/2-	M1+E2	1.6 4	0.89 <i>17</i>	$\alpha(K)=0.54 \ 17; \ \alpha(L)=0.267 \ 4; \ \alpha(M)=0.0690 \ 14; \ \alpha(N+)=0.0221 \ 4 \ \alpha(N)=0.0180 \ 4; \ \alpha(O)=0.00373 \ 6; \ \alpha(P)=0.000461 \ 15 \ Mult.: \ \alpha(exp)=0.9 \ I, \ A_2=-0.13 \ 3 \ A_4=+0 \ 02 \ 3 \ (1985Po08)$	
234.1 3	40	6772.1	49/2+	6538.0	47/2+	M1+E2		0.7 5	$\begin{aligned} &\alpha(\mathbf{K})=0.5\ 5;\ \alpha(\mathbf{L})=0.155\ 18;\\ &\alpha(\mathbf{M})=0.0387\ 23;\\ &\alpha(\mathbf{N}+)=0.0125\ 9\\ &\alpha(\mathbf{N})=0.0101\ 6;\ \alpha(\mathbf{O})=0.00214\\ &20;\ \alpha(\mathbf{P})=0.00028\ 6\\ &\text{Mult.:}\ \mathbf{A}_2=-0.33\ 5,\ \mathbf{A}_4=+0.05\ 5\\ &(1985\text{Po08}). \end{aligned}$	

Continued on next page (footnotes at end of table)

 $^{209}_{86}$ Rn₁₂₃-3

				¹⁹⁸ F	r t(¹⁶ O,5 nγ	γ) 1985Ρ α	08 (conti	nued)				
	$\gamma(^{209}\text{Rn})$ (continued)											
E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments			
288.1 3	60	6826.1	49/2+	6538.0	47/2+	M1+E2		0.4 3	$\begin{aligned} &\alpha(K) = 0.31 \ 24; \ \alpha(L) = 0.078 \ 19; \\ &\alpha(M) = 0.019 \ 4; \ \alpha(N+) = 0.0063 \ 13 \\ &\alpha(N) = 0.0050 \ 10; \ \alpha(O) = 0.00108 \ 24; \\ &\alpha(P) = 0.00015 \ 5 \\ &Mult.: \ A_2 = -0.31 \ 4, \ A_4 = +0.05 \ 4 \end{aligned}$			
315.5 <i>I</i>	190	3987.0	(31/2 ⁺)	3671.5	(29/2+)	M1			(1985Po08). $\alpha(K)=0.416\ 9;\ \alpha(L)=0.0748\ 12;$ $\alpha(M)=0.0178\ 3;\ \alpha(N+)=0.00579\ 9$ $\alpha(N)=0.00463\ 7;\ \alpha(O)=0.001012\ 16;$ $\alpha(P)=0.0001476\ 24$ Mult.: $\alpha(K)\exp=0.46\ 3,\ A_2=-0.23\ 2,$ $A_1=0.023\ 2,\ (1085Pa09)$			
325.4 1	≈110	2744.15	(23/2 ⁺)	2418.71	21/2+	M1+E2	0.6 3	0.38 7	$\alpha_{\rm K} = -0.022$ (1981-008). $\alpha({\rm K}) = 0.30$ 6; $\alpha({\rm L}) = 0.061$ 6; $\alpha({\rm M}) = 0.0147$ 13; $\alpha({\rm N}+) = 0.0048$ 4 $\alpha({\rm N}) = 0.0038$ 4; $\alpha({\rm O}) = 0.00083$ 8; $\alpha({\rm P}) = 0.000118$ 14 Mult.: $\alpha({\rm K}) \exp = 0.30$ 6, A ₂ = -0.38 5, A ₁ = 1.0.022 (1985Pa08)			
347.2 1	50	2848.48	25/2-	2501.29	23/2-	M1(+E2)	<1.6	0.33 7	$\alpha(K) = 0.267; \alpha(L) = 0.0527; \alpha(M) = 0.0124 14; \alpha(N+) = 0.00405 \alpha(N) = 0.00324; \alpha(O) = 0.000709; \alpha(P) = 0.000100 15$ Mult.: $\alpha(\exp) = 0.53, A_2 = -0.146, A_4 = -0.096(1985Pa08)$			
376.2 1	200	1173.98	13/2+	797.80	9/2-	M2		1.029	$\alpha(K) = 0.775 \ II; \ \alpha(L) = 0.191 \ 3;$ $\alpha(M) = 0.0475 \ 7; \ \alpha(N+) = 0.01559 \ 22$ $\alpha(N) = 0.01248 \ 18; \ \alpha(O) = 0.00272 \ 4;$ $\alpha(P) = 0.000389 \ 6$ Mult.: $\alpha(exp) = 1.10 \ 6, \ \alpha(K)exp = 0.89 \ 7, \ \alpha(L)exp = 0.27 \ 3, \ A_2 = +0.06 \ 2,$ $\Delta_{\alpha} = -0.01 \ 2, \ (1985Po08)$			
382.0 ^{&} 3	70	3539.9	(27/2 ⁺)	3157.48	29/2-	[E1]			E_{γ} : unassigned in Table 2 and not shown in the level scheme, but included in the table of branching ratios (Table 4) in 1985Po08. Mult.: A ₂ =-0.02 8, A ₄ =0.00 9 (1985Po08) in consistent with D, the level scheme requires Mult. E1			
383.2 2	50	5216.9?	41/2+	4833.7	41/2-	(E1)		0.0193	$\alpha(K)=0.01572 \ 22; \ \alpha(L)=0.00272 \ 4; \alpha(M)=0.000641 \ 9; \alpha(N+)=0.000207 \ 3 \alpha(N)=0.0001659 \ 24; \ \alpha(O)=3.57\times10^{-5} 5; \ \alpha(P)=4.98\times10^{-6} \ 7 Mult.: \ A_2=+0.33 \ 5, \ A_4=+0.00 \ 6 (1985Po08), \ consistent \ with \ J \ to \ J D$			
387.6 1	280	1561.55	15/2-	1173.98	13/2+	(E1)		0.0188	α(K)=0.01534 22; α(L)=0.00265 4; α(M)=0.000625 9; α(N+)=0.000201 3 α(N)=0.0001617 23; α(O)=3.48×10-5 5; α(P)=4.86×10-6 7 Mult.: α(K)exp<0.22, A2=-0.05 2, A4=-0.01 2. α(K)exp is consistent with E1 or E2(+M1). The placement in the level scheme requires Δπ=yes.			

 ${}^{209}_{86}\text{Rn}_{123}$ -4

¹⁹⁸Pt(¹⁶O,5nγ) **1985Po08** (continued)

γ ⁽²⁰⁹Rn) (continued)</sup>

E _γ ‡	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
401.3 <i>1</i>	160	4583.6	(35/2+)	4182.4	(33/2+)	M1(+E2)			Additional information 1. $\alpha(K)=0.201 \ 19; \ \alpha(L)=0.0369 \ 22;$ $\alpha(M)=0.0088 \ 5;$ $\alpha(N+)=0.00286 \ 16$ $\alpha(N)=0.00229 \ 13; \ \alpha(O)=0.00050$ $\beta; \ \alpha(P)=7.2\times10^{-5} \ 5$
404.4 <i>1</i>	90	4988.0	(37/2+)	4583.6	(35/2+)	M1+E2		0.16 <i>11</i>	Mult.: $\alpha(K) \exp=0.32 \ 8, \ A_2 = -0.51 \ 2, \ A_4 = +0.11 \ 2 \ (1985 \text{Po08}).$ $\alpha(K) = 0.13 \ 9; \ \alpha(L) = 0.028 \ 11; \ \alpha(M) = 0.0068 \ 23; \ \alpha(N+) = 0.0022 \ 8 \ \alpha(N) = 0.0018 \ 6; \ \alpha(O) = 0.00038 \ 14; \ \alpha(P) = 5.3 \times 10^{-5} \ 23$
116 2 3	70	2864 6		2419 71	21/2+				Mult.: $A_2 = -0.58$ 9, $A_4 = +0.24$ 10 (1985Po08).
440.2 3	70	2004.0	27/2-	2410.71	21/2	F2		0.0430	$A_2 = -0.0800, A_4 = 0.00000$ (1985P008). $\alpha(K) = 0.028444; \alpha(L) = 0.0115817;$
450.5 1	70	2931.36	21/2	2301.29	23/2	EZ		0.0439	$\alpha(\mathbf{N}) = 0.0234 \ 4, \ \alpha(\mathbf{L}) = 0.01138 \ 17, \\ \alpha(\mathbf{M}) = 0.00296 \ 5; \\ \alpha(\mathbf{N}+) = 0.000953 \ 14 \\ \alpha(\mathbf{N}) = 0.000771 \ 11; \\ \alpha(\mathbf{O}) = 0.0001612 \ 23; \\ \alpha(\mathbf{P}) = 2.04 \times 10^{-5} \ 3 \\ \mathbf{M} = (\mathbf{M}) = 0.001612 \ \mathbf{M} = 0.0001612 \ \mathbf{M} = 0.001612 \ \mathbf{M} = 0$
479.3 1	200	3636.78	35/2+	3157.48	29/2-	E3		0.1415	with C α (K)exp<0.41 is consistent with D or E2. The placement in the level scheme requires mult=E2. A ₂ =+0.08 4, A ₄ =-0.03 5 (1985Po08). α (K)=0.0647 9; α (L)=0.0567 8; α (M)=0.01514 22; α (N+)=0.00489 7 α (N)=0.00397 6; α (O)=0.000823 <i>12</i> ; α (P)=0.0001014 <i>15</i> Mult: α (K)exp=0.071 <i>10</i> , α (L)exp=0.056 7, A ₂ =+0.10 <i>1</i> ,
481.6 <i>3</i>	20	7307.7	51/2	6826.1	49/2+	D			$A_4 = +0.01 I (1985P008).$ Mult.: $A_2 = -0.20 9, A_4 = +0.10 II$
490.6 4	70	3539.9	$(27/2^+)$	3049.9					(1985P008). $A_2 = -0.12 4, A_4 = +0.09 5$
550.8 1	230	2238.16	21/2-	1687.41	19/2-	M1(+E2)	≤0.7		(1985P008). $\alpha(K)=0.091\ 22;\ \alpha(L)=0.016\ 3;\ \alpha(M)=0.0038\ 7;\ \alpha(N+)=0.00125\ 22$ $\alpha(N)=0.00100\ 18;\ \alpha(O)=0.00022$ $4;\ \alpha(P)=3.2\times10^{-5}\ 7$ Mult.: $\alpha(K)\exp=0.09\ 2,\ A_2=-0.45$
596.2 <i>3</i>	80	4583.6	(35/2+)	3987.0	(31/2+)	[E2]		0.0235	4, A_4 =+0.06 4 (1985Po08). $\alpha(K)$ =0.01670 24; $\alpha(L)$ =0.00509 8; $\alpha(M)$ =0.001277 18; $\alpha(N+)$ =0.000412 6 $\alpha(N)$ =0.000333 5; $\alpha(O)$ =7.03×10 ⁻⁵ 10; (D) 0.24×10 ⁻⁶ 12
602.8 <i>3</i>	80	5819.8	43/2+	5216.9?	41/2+	M1+E2	0.8 +10-6		$\alpha(F) = 9.24 \times 10^{-5} 13$ $\alpha(K) = 0.052 22; \ \alpha(L) = 0.010 3;$ $\alpha(M) = 0.0024 7;$

Continued on next page (footnotes at end of table)

¹⁹⁸Pt(¹⁶O,5nγ) **1985Po08** (continued)

$\gamma(^{209}\text{Rn})$ (continued)

Eγ‡	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.#	α^{\dagger}	Comments
610.3 <i>I</i>	140	2848.48	25/2-	2238.16	21/2-	E2	0.0223	$\begin{aligned} &\alpha(N+)=0.00077\ 24\\ &\alpha(N)=0.00062\ 19;\ \alpha(O)=0.00013\ 5;\\ &\alpha(P)=1.9\times10^{-5}\ 7\\ &\text{Mult.:}\ \alpha(K)\exp=0.05\ 2,\ A_2=-0.40\ 5,\ A_4=+0.05\ 5\\ &(1985Po08).\\ &\alpha(K)=0.01596\ 23;\ \alpha(L)=0.00476\ 7;\\ &\alpha(M)=0.001192\ 17;\ \alpha(N+)=0.000385\ 6\\ &\alpha(N)=0.000310\ 5;\ \alpha(O)=6.57\times10^{-5}\ 10;\\ &\alpha(P)=8.66\times10^{-6}\ 13\end{aligned}$
627.2 2	50	2238.16	21/2-	1610.67	17/2-	[E2]	0.0210	Mult.: $\alpha(K)\exp=0.019 \ 6, \ A_2=+0.11 \ 3, \ A_4=-0.02 \ 3$ (1985Po08). $\alpha(K)=0.01514 \ 22; \ \alpha(L)=0.00441 \ 7;$ $\alpha(M)=0.001101 \ 16; \ \alpha(N+)=0.000355 \ 5$ $\alpha(N)=0.000287 \ 4; \ \alpha(O)=6.07\times10^{-5} \ 9;$
656.3 <i>3</i> 667.7 <i>1</i>	40 650	3400.6 1465.53	13/2-	2744.15 797.80	(23/2 ⁺) 9/2 ⁻	E2	0.0184	$\begin{aligned} &\alpha(P) = 8.04 \times 10^{-6} \ I2 \\ &\text{Mult.: } A_2 = +0.03 \ 7, \ A_4 = -0.07 \ 8 \ (1985\text{Po08}). \\ &A_2 = -0.23 \ 6, \ A_4 = +0.07 \ 6 \ (1985\text{Po08}). \\ &\alpha(K) = 0.01344 \ I9; \ \alpha(L) = 0.00370 \ 6; \\ &\alpha(M) = 0.000921 \ I3; \ \alpha(N+) = 0.000298 \ 5 \\ &\alpha(N) = 0.000240 \ 4; \ \alpha(O) = 5.09 \times 10^{-5} \ 8; \\ &\alpha(P) = 6.79 \times 10^{-6} \ I0 \end{aligned}$
718.2 3	50	6538.0	47/2+	5819.8	43/2+	E2	0.01574	Mult.: $\alpha(K)\exp=0.014 I$, $A_2=+0.16 I$, $A_4=-0.03 I$ (1985Po08). $\alpha(K)=0.01170 I7$; $\alpha(L)=0.00304 5$; $\alpha(M)=0.000753 II$; $\alpha(N+)=0.000243 4$ $\alpha(N)=0.000196 3$; $\alpha(O)=4.17\times10^{-5} 6$; $\alpha(P)=5.62\times10^{-6} 8$
731.3 1	260	2418.71	21/2+	1687.41	19/2-	E1	0.00522	Mult.: $\alpha(K) \exp[0.016 5, A_2] = +0.29 7, A_4] = -0.01 6$ (1985Po08). $\alpha(K) = 0.00431 6; \alpha(L) = 0.000698 10;$ $\alpha(M) = 0.0001636 23; \alpha(N+) = 5.29 \times 10^{-5} 8$ $\alpha(N) = 4.24 \times 10^{-5} 6; \alpha(O) = 9.20 \times 10^{-6} 13;$ (N) = 4.21 × 10^{-5} 6; $\alpha(O) = 9.20 \times 10^{-6} 13;$
795.7 2	80	3539.9	(27/2 ⁺)	2744.15	(23/2+)	E2	0.01276	$\alpha(P)=1.51/\times10^{\circ} T9$ Mult.: $\alpha(K)\exp=0.003 I$, $A_2=-0.05 2$, $A_4=+0.01 2$ (1985Po08). $\alpha(K)=0.00966 I4$; $\alpha(L)=0.00234 4$; $\alpha(M)=0.000574 8$; $\alpha(N+)=0.000186 3$ $\alpha(N)=0.0001494 2I$; $\alpha(O)=3.19\times10^{-5} 5$; $\alpha(P)=4 34\times10^{-6} 6$
797.8 1	1000	797.80	9/2-	0	5/2-	E2	0.01269	Mult.: $\alpha(K) \exp=0.007 \ 6$, $A_2=+0.18 \ 7$, $A_4=-0.05 \ 7 \ (1985Po08)$. $\alpha(K)=0.00961 \ 14$; $\alpha(L)=0.00232 \ 4$; $\alpha(M)=0.000570 \ 8$; $\alpha(N+)=0.000184 \ 3$ $\alpha(N)=0.0001483 \ 21$; $\alpha(O)=3.17\times10^{-5} \ 5$; $\alpha(P)=4 \ 32\times10^{-6} \ 6$
805.1 8 813.9 <i>1</i>	50 180	4988.0 2501.29	(37/2 ⁺) 23/2 ⁻	4182.4 1687.41	(33/2 ⁺) 19/2 ⁻	E2	0.01219	Mult.: $\alpha(K)\exp=0.010 I$, $A_2=+0.13 I$, $A_4=-0.02 I$ (1985Po08). $\alpha(K)=0.00926 I3$; $\alpha(L)=0.00221 3$; $\alpha(M)=0.000541 8$; $\alpha(N+)=0.0001751 25$ $\alpha(N)=0.0001409 20$; $\alpha(O)=3.01\times10^{-5} 5$; $\alpha(P)=4.11\times10^{-6} 6$
986.1 2	90	5819.8	43/2+	4833.7	41/2 ⁻	E1	0.00302	Mult.: $\alpha(K)\exp=0.012 \ 2$, $A_2=+0.15 \ 2$, $A_4=-0.03 \ 2 \ (1985Po08)$. $\alpha(K)=0.00250 \ 4$; $\alpha(L)=0.000396 \ 6$;

Continued on next page (footnotes at end of table)

					¹⁹⁸ Pt (¹⁶	Ο,5n γ)	1985Po08	(continued)
						γ (²⁰⁹ Rn)) (continued	<u>1)</u>
E _γ ‡	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [#]	α^{\dagger}	Comments
1196.9 2	100	4833.7	41/2-	3636.78	35/2+	E3	0.01295	$\begin{split} &\alpha(\mathrm{M}) = 9.26 \times 10^{-5} \ 13; \ \alpha(\mathrm{N}+) = 3.00 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 2.40 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 5.23 \times 10^{-6} \ 8; \\ &\alpha(\mathrm{P}) = 7.54 \times 10^{-7} \ 11 \\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.002 \ 1, \ \mathrm{A_2} = -0.20 \ 5, \ \mathrm{A_4} = -0.06 \ 5 \\ &(1985 \mathrm{Po08}). \\ &\alpha(\mathrm{K}) = 0.00963 \ 14; \ \alpha(\mathrm{L}) = 0.00250 \ 4; \ \alpha(\mathrm{M}) = 0.000619 \\ &g \ \alpha(\mathrm{N}+) = 0.000202 \ 3 \\ &\alpha(\mathrm{N}) = 0.001616 \ 23; \ \alpha(\mathrm{O}) = 3.46 \times 10^{-5} \ 5; \\ &\alpha(\mathrm{P}) = 4.76 \times 10^{-6} \ 7; \ \alpha(\mathrm{IPF}) = 1.054 \times 10^{-6} \ 16 \\ &\mathrm{Mult.:} \ \mathrm{M1 \ or \ E3 \ from \ } \alpha(\mathrm{K}) \exp = 0.011 \ 2, \\ &\alpha(\mathrm{L}) \exp = 0.005 \ 1, \ \mathrm{A_2} = +0.30 \ 3, \ \mathrm{A_4} = -0.02 \ 3 \\ &(1985 \mathrm{Po08}); \ \mathrm{T_{1/2} \ rules \ out \ M1}. \end{split}$

[†] Additional information 2. [‡] From 1985Po08. Relative intensities normalized to $I\gamma((797.8\gamma)=1000$, for ¹⁶O bombardment at 94 MeV. [#] From ce and $\gamma(\theta)$ data in 1985Po08. $\alpha(\exp)$ were determined from intensity balances using $I\gamma$ from delayed spectra. [@] From ce data in 1985Po08. [&] Placement of transition in the level scheme is uncertain.

 $^{209}_{86} Rn_{123}$