¹⁸⁴W(³⁰Si,5nγ) 2004Re04

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013						

2004Re04: E=148 MeV ³⁰Si beams were produced from the ESTU tandem accelerator at the Wright Nuclear Structure Laboratory. Target is two stacked 200 μ g/cm² ¹⁸⁴W. Reaction recoils were separated in the Small Angle Separator System at Yale for Evaporation Residues (SASSYER) and γ -rays were detected with the YRAST Ball array comprising of 8 clover HPGe detectors (at 90° and 140° rings). Delayed γ -rays, depopulating isomeric states, were detected within 6 μ s following a recoil implantation were detected with 5 additional HPGe detectors that were placed around the focal plane chamber. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced level scheme. See also 2005Re02.

²⁰⁹Ra Levels

E(level) [†]	J ^{π#}	T _{1/2}	Comments	
0.0	5/2-	4.8 s 2	$J^{\pi}, T_{1/2}$: from Adopted Levels.	
643.6 [‡] 5 882.4 7	$(9/2^{-})$ $13/2^{+}$	117 μs 5	E(level), J^{π} : from Adopted Levels. 2004Re04 suggest an isomer with $J^{\pi}=13/2^+$ at 900 keV,	
002.17	10/2	117 µ5 5	≈ 250 keV above the 643.6 level, based on systematics of such states in 205 Po and 207 Rn isotones.	
			T _{1/2} : from Adopted Levels. $\approx 50 \ \mu s$ is suggested by 2004Re04, based on the systematics of such isomers in ²⁰⁵ Po and ²⁰⁷ Rn.	
1014.4 [‡] 7	$(11/2^{-})$			
1408.9 [‡] 7	$(13/2^{-})$			
1450.9 9 1888.1 10	$(17/2^+)$ $(21/2^+)$			
2223.7 12	(21/2) $(25/2^+)$			
2452.8? 13	$(27/2^+)$			
2760? 15	$(29/2^+)$			

 † From a least-squares fit to Ey, unless otherwise stated.

[‡] Fed from a long-lived (a few μ s or longer) isomeric state, since 378.8 γ , 643.6 γ and 765.3 γ were observed at the focal plane.

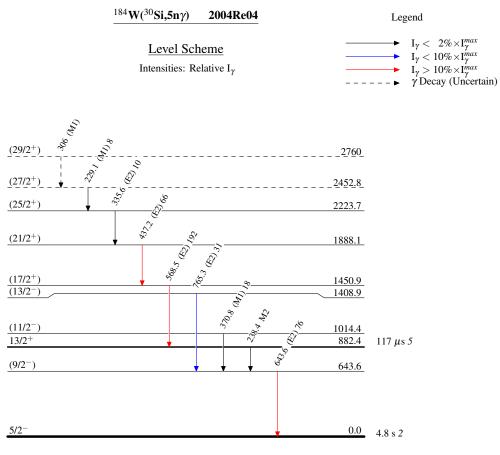
[#] From 2004Re04, based on systematics and the deduced γ -ray transition multipolarities, unless otherwise stated.

							_
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
229.1 5 238.4 5	8 2	2452.8? 882.4	$(27/2^+)$ 13/2 ⁺	2223.7 643.6	(25/2 ⁺) (9/2 ⁻)	(M1) M2	E_{γ} ,Mult.: from Adopted Gammas.
306 [@] 335.6 5	10 <i>1</i>	2760? 2223.7	$(29/2^+)$ $(25/2^+)$	2452.8? 1888.1	$(27/2^+)$ $(21/2^+)$	(M1) (E2)	
370.8 [‡] 5 437.2 5 568.5 5	18 <i>1</i> 66 2 192 6	1014.4 1888.1 1450.9	$(11/2^{-})$ $(21/2^{+})$ $(17/2^{+})$	643.6 1450.9 882.4	$(9/2^{-})$ $(17/2^{+})$ $13/2^{+}$	(M1) (E2) (E2)	I_{γ} : delayed intensity=3.1 7 (2004Re04).
643.6 [‡] 5	76 <i>3</i>	643.6	(9/2 ⁻)	0.0	5/2-	(E2)	I_{γ} : delayed intensity=26 2 (2004Re04).
765.3 [‡] 5	31 2	1408.9	(13/2 ⁻)	643.6	(9/2 ⁻)	(E2)	E_{γ} : 764.9 5 from 2005Re02. I_{γ} : delayed intensity=16 2 (2004Re04).
^x 835.3 5	64 <i>3</i>						

 $\gamma(^{209}\text{Ra})$

[†] From 2004Re04, unless otherwise stated. Intensities are relative to $I\gamma(518\gamma,^{210}Ra)=100$. Additional γ -rays that were not assigned to ²⁰⁹Ra are tabulated in 2004Re04.

[‡] Observed in the focal plane and, therefore, fed from an isomeric state with a half-life of a few μ s or longer (2004Re04).


¹⁸⁴W(³⁰Si,5nγ) **2004Re04** (continued)

γ (²⁰⁹Ra) (continued)

[#] From 2004Re04 based on measured γ -ray anisotropies, unless otherwise stated. Quadrupole (assumed E2) for R=I $\gamma(140^\circ)/I\gamma(90^\circ)>1$ and dipole (assumed M1) for R<1.

^(a) Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{209}_{88}$ Ra₁₂₁