²¹⁰Po(d,t),(p,d) 1979Bh01

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	J. Chen # and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013						

Target ²¹⁰Po $J^{\pi}(g.s.)=0^{+}$.

1979Bh01: E_d =17.0 MeV and E_p =17.8 MeV beams were produced from two-stage tandem facility at the University of Pittsburgh. A target of about 100 μ g/cm² 95% ²¹⁰Po metal on a 50 μ g/cm² carbon foil. Reaction products were momentum analyzed with a split-pole magnetic spectrograph (FWHM \approx 15, estimated by evaluator) and detected in emulsions. Measured $\sigma(E_d,E_p,\theta)$. Deduced levels, J^π , L, spectroscopic factors from a DWBA analysis.

²⁰⁹Po Levels

 $N \times g \times C^2 S = \sigma(\theta)_{exp}/\sigma(\theta)_{DWBA}$, where N is the normalization factor and g=1/(2j+1) for (d,t) and (p,d) reactions with j the angular momentum of the transferred nucleon. N=1.53 (1979Bh01).

E(level)	L^{\dagger}	$C^2S/(2j+1)^{\dagger}$	E(level)	L^{\dagger}	$C^2S/(2j+1)^{\dagger}$	E(level)	L^{\dagger}	$C^2S/(2j+1)^{\dagger}$
0	1	1.05	1765 10	6	0.69	2206 10	(3)	
547 10	3	1.05	1996 <i>10</i>	3	0.07	2239 10	3	0.22
857 10	1	0.81	2061 <i>10</i>	(3)		2339 10	3	0.09
1174 <i>10</i>	3	0.07	2082 10	(3)		2363 10	3	0.11
1214 <i>10</i>	1	0.14	2186 <i>10</i>	(3)		2664 10	3	0.19

[†] From the comparisons of the measured angular distributions from (d,t) with the DWBA predictions. Some S values are also given by the authors for (p,d). In order to extract C^2S , the authors assume the correspondence $p_{3/2}$ for L=1, except $p_{1/2}$ for the gs, $f_{7/2}$ for L=3, except $f_{5/2}$ for the 547 and 1174 levels, and $i_{13/2}$ for L=6. Relative spectroscopic factors are also available from (p,d).