²⁰⁴Hg(⁹Be,4nγ) **2000Po03**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013						

2000Po03: E=62 MeV ⁹Be beam was produced from the ANU 14 UD Pelletron accelerator. A enriched target of ²⁰⁴Hg. γ -rays were detected by the CAESAR array of Compton suppressed Ge detectors. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma\gamma(t)$, $\gamma(lin pol)$. Deduced levels, J^{π} , half-lives, γ -branchings, γ -multipolarities. Comparisons with shell-model calculations.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0	$1/2^{-}$		$configuration = \nu (3p_{1/2})^{-1}$.
			J^{π} : from Adopted Levels.
545.10 10	5/2-		configuration= $\nu(2f_{5/2})^{-1}$.
1327.10 15	9/2-		configuration= $\pi (1h_{9/2})^{+2} \otimes \nu (3p_{1/2})^{-1}$.
1418.00 25	$13/2^{-}$		configuration= $\pi (1h_{9/2})^{+2} \otimes \nu (3p_{1/2})^{-1}$.
1472.9 <i>3</i>	$17/2^{-}$		configuration= $\pi (1h_{9/2})^{+2} \otimes \nu (3p_{1/2})^{-1}$.
1937.9 <i>3</i>	$17/2^{-}$		configuration= $\pi (1h_{9/2})^{+2} \otimes \nu (2f_{5/2})^{-1}$.
2030.1 3	19/2-		configuration= $\pi (1h_{9/2})^{+2} \otimes \nu (2f_{5/2})^{-1}$.
2167.2 3	$21/2^{-}$		configuration= $\pi (1h_{9/2})^{+2} \otimes \nu (2f_{5/2})^{-1}$.
2770.2 4	$23/2^{+}$		configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2})^{-1}$.
2976.7 4	$25/2^+$		configuration= $\pi (1h_{9/2})^{+2} \otimes \nu (1i_{13/2})^{-1}$.
3620.6 4	$27/2^+$	<7 ns	configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(2f_{5/2})^{-1}$.
4168.6 4	$29/2^+$		configuration= $\pi (1h_{9/2})^{+2} \otimes \nu (1i_{13/2})^{-1}$.
4265.6 4	$31/2^{-}$	119 ns 4	$T_{1/2}$: from 1289.0 γ (t), 206.5 γ (t) and 603.0 γ (t) (2000Po03).
			configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(2g_{9/2}^{+1}3p_{1/2}^{-2})^3$.
4354.3 4	$31/2^{-}$	<7 ns	configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(1i_{13/2})^{-1}$.
4531.1 4	$33/2^{-}$	<7 ns	configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(1i_{13/2})^{-1}$.
5355.6 4	$35/2^{-}$	<3.5 ns	configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2}^{-1}2f_{5/2}^{-1}2g_{9/2}^{+1})^3$.
5503.6 4	$37/2^{+}$	<10 ns	configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2}^{-2}1j_{15/2}^{+1})^{3}$
6233.0 4	39/2+		configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2}^{-1}2f_{5/2}^{-1}1j_{15/2}^{+1})^3$.
6302.4 4	$(39/2^+)$		configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2}^{-1}1i_{13/2}^{-1}2g_{9/2}^{-1})^3$.
6464.1 <i>4</i>	$(41/2^+)$		configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2}^{-1}2f_{5/2}^{-1}1j_{15/2}^{+1})^3$.
6739.3 5	$(43/2^+)$	<7 ns	configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2}^{-1}1i_{13/2}^{-1}2g_{9/2}^{-1})^3$.
6807.6 5	$(41/2^+)$		configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2}^{-1}1i_{13/2}^{-1}2g_{9/2}^{+1})^3$.
7159.4 5	$(45/2^+)$		configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2}^{-1}1i_{13/2}^{-1}2g_{9/2}^{+1})^3$.
7247.9 5	$(43/2^+)$		configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(3p_{1/2}^{-1}2f_{5/2}^{-1}1j_{15/2}^{+1'})^3$.
7693.1 5	$(47/2^+)$		configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(2f_{5/2}^{-1}1i_{13/2}^{-1}2g_{9/2}^{+4}f)^3$.
8390.7 6	$(47/2^{-})$		configuration= $\pi(1h_{9/2}1i_{13/2})^{+2} \otimes \nu(1i_{13/2}^{2/2}2g_{9/2}^{+1})^{3/2}$

[†] From a least-squares fit to γ -ray energies.

[‡] From deduced γ transition multipolarities using $\gamma(\theta)$ and $\gamma(\text{lin pol})$ (for E $\gamma \ge 250$ keV), unless otherwise noted.

[#] Limits from $\gamma(t)$ in 2000Po03.

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments	
54.9 2		1472.9	$17/2^{-}$	1418.00	13/2-	(E2) [‡]		
88.6 [@] 2		4354.3	31/2-	4265.6	$31/2^{-}$	(M1) [‡]	I _{γ} : I(γ +ce)=37 3.	
90.9 2		1418.00	$13/2^{-}$	1327.10	9/2-	(E2) [‡]		
92.1 [@] 2		2030.1	19/2-	1937.9	$17/2^{-}$	(M1) [‡]	$I_{\gamma}: I(\gamma + ce) = 16 2.$	
96.9 1	70	4265.6	31/2-	4168.6	29/2+	(E1) [‡]	Mult.: A comparison of the I γ and I(γ +ce) is consistent with mult=E1 not with M1. M1 given in the 2000Po03 could be a	
	Continued on most more (fortunated of table)							

 $\gamma(^{209}\text{Po})$

Continued on next page (footnotes at end of table)

204 Hg(9 Be,4n γ) 2000Po03 (continued)									
γ ⁽²⁰⁹ Po) (continued)									
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]	δ	Comments	
								typo since it is inconsistent with the spin-party assignments of the connecting levels.	
137.1 <i>1</i> 148.0 2 161.5 2	350 47 35	2167.2 5503.6 6464.1	21/2 ⁻ 37/2 ⁺ (41/2 ⁺)	2030.1 5355.6 6302.4	19/2 ⁻ 35/2 ⁻ (39/2 ⁺)	M1 E1 E2(+M1)	>1.0	Mult.: $A_2 = -0.03$ 22. Mult.: $\alpha(\exp) < 0.37$, from intensity balances. Mult., δ : from $\alpha(\exp) = 1.4$ 5, from intensity balances.	
176.8 <i>1</i>	109	4531.1	33/2-	4354.3	31/2-	M1		Mult.: A ₂ =+0.05 <i>l</i> , $\alpha(\exp)$ =1.7 <i>b</i> , from intensity balances.	
185.6 <i>1</i>	300	4354.3	31/2-	4168.6	29/2+	E1		Mult.: $A_2 = -0.24$ 11. L.: $I(\gamma + ce) = 58$ 3	
206.5 <i>1</i> 265.6 2 275.2 <i>1</i> ^x 299.9 2	470 27 120 30	2976.7 4531.1 6739.3	25/2 ⁺ 33/2 ⁻ (43/2 ⁺)	2770.2 4265.6 6464.1	23/2 ⁺ 31/2 ⁻ (41/2 ⁺)	M1 (M1) M1		Mult.: $A_2 = -0.12$ 4. Mult.: $A_2 = -0.02$ 12, pol=-0.7 6. Mult.: $A_2 = -0.26$ 7, pol=-0.83 26.	
420.1 <i>1</i>	52	7159.4	$(45/2^+)$	6739.3	$(43/2^+)$	(M1+E2) [‡]			
$440.3\ 2$	26 40	7247.9	$(43/2^+)$	6807.6	$(41/2^+)$	(M1+E2) [‡]			
$465.1\ 2$ $x467.1\ 2$	25 30	1937.9	17/2-	1472.9	17/2-	(M1)		Mult.: $A_2 = +0.01 5$.	
519.9 2 545.1 <i>1</i>	40 1000	1937.9 545.10	17/2 ⁻ 5/2 ⁻	1418.00 0	13/2 ⁻ 1/2 ⁻	(E2) [‡] E2		Mult.: from Adopted Gammas. $A_2 = -0.03 2$,	
548.0 <i>1</i> 557.2 <i>1</i>	215 450	4168.6 2030.1	29/2 ⁺ 19/2 ⁻	3620.6 1472.9	27/2 ⁺ 17/2 ⁻	M1+E2 M1+E2		Mult.: $A_2 = -0.29 5$, pol= $-0.19 23$. Mult.: $A_2 = -0.32 3$, pol= $+0.15 8$. I_{γ} : $I(\gamma + ce) = 84 2$.	
574.6 2 603.0 <i>1</i> 643.9 <i>1</i> ^x 654.0 <i>1</i>	40 670 260 60	6807.6 2770.2 3620.6	(41/2 ⁺) 23/2 ⁺ 27/2 ⁺	6233.0 2167.2 2976.7	39/2 ⁺ 21/2 ⁻ 25/2 ⁺	(M1) [‡] E1 M1+E2		Mult.: $A_2 = +0.28 \ 3$. Mult.: $A_2 = -0.26 \ 4$, pol $= -0.46 \ 17$.	
694.3 <i>1</i> 729.4 <i>1</i> ^x 752.8 2	190 80 50	2167.2 6233.0	21/2 ⁻ 39/2 ⁺	1472.9 5503.6	17/2 ⁻ 37/2 ⁺	(E2) [‡] M1		Mult.: A ₂ =-0.46 <i>12</i> , pol=-0.86 27.	
782.0 1	980	1327.10	9/2-	545.10	5/2-	E2		Mult.: from Adopted Gammas. A ₂ =0.00 <i>I</i> , pol=+0.5 5.	
824.6 <i>1</i> 953.8 <i>2</i> ^x 1028.7 <i>4</i>	145 45 50	5355.6 7693.1	35/2 ⁻ (47/2 ⁺)	4531.1 6739.3	33/2 ⁻ (43/2 ⁺)	M1 (E2)		Mult.: $A_2 = -0.12$ 7, pol=-0.14 24. Mult.: $A_2 = +0.10$ 36, pol=-0.37 116.	
1108.6 2 1231.3 4	80 25	6464.1 8390.7	(41/2 ⁺) (47/2 ⁻)	5355.6 7159.4	35/2 ⁻ (45/2 ⁺)	(E3) [‡] (E1)		Mult.: A ₂ =-0.16 22.	
1238.0 2 1289.0 2	110 230	5503.6 4265.6	37/2 ⁺ 31/2 ⁻	4265.6 2976.7	31/2 ⁻ 25/2 ⁺	(E3) [‡] E3		Mult.: A_2 =+0.10 7, A_4 =-0.18 10, pol=+0.48 34.	
1297.3 2	90	2770.2	23/2+	1472.9	17/2-	E3		Mult.: $A_2 = +0.09 I 8$, $A_4 = -0.30 26$, pol=+0.4 8.	
1304.1 4	27	6807.6	(41/2+)	5503.6	37/2+	(E2) [‡]			
1377.6 <i>4</i> 1771.2 2	30 95	4354.3 6302.4	31/2 ⁻ (39/2 ⁺)	2976.7 4531.1	25/2 ⁺ 33/2 ⁻	(E3)* (E3)		I_{γ} : $I(\gamma+ce)=5$ 2. Mult.: $A_2=0.00$ 17.	

[†] From 2000Po03 based on $\gamma(\theta)$ and $\gamma(\text{lin pol})$, unless otherwise noted. The quoted $\alpha(\exp)$ are from intensity balances. [‡] No $\gamma(\theta)$ or $\gamma(\text{lin pol})$ values are given by the authors.

204 Hg(9 Be,4n γ) 2000Po03 (continued)

 γ ⁽²⁰⁹Po) (continued)</sup>

[#] From 2000Po03. ^(@) Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

²⁰⁹₈₄Po₁₂₅

4