(HI,xnγ) **1998Re05**

		History	
Туре	Author	Citation	Literature Cutoff Date
Update	F. G. Kondev	ENSDF	14-Jun-2015

1998Re05: ^{209Pb} produced in deep-inelastic reactions using ²⁰⁸Pb (6.5 MeV/A) and ¹³⁶Xe (5.7 MeV/A) beams on a 30 mg/cm² thick, ²⁰⁸Pb target at GSI and ⁷⁶Ge (420 MeV) beam on a thick, ²⁰⁸Pb target at INFN, Legnaro. Euroball Ge-cluster detectors and 132 NaI detectors of Crystal Ball were used in the GSI experiment, where the beam was pulsed with less than 5 ms (1 ns wide with a separation of 110 ns) macro pulses with a repetition of 20 ms. GASP array was used at Legnaro.

Others from the same collaboration: 2000Re12, 1999ReZT.

²⁰⁹Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0 779.20 <i>15</i>	9/2 ^{+#} 11/2 ^{+#}	3.234 h 7	
1422.70 <i>10</i> 1567.0 <i>10</i> 2032.0 <i>15</i>	$15/2^{-#}$ $5/2^{+#}$ $1/2^{+#}$		configuration= $\nu(1_{J_{15/2}})^{+1}$ with $\nu(2g_{9/2})^{+1}\otimes 3^{-}$ admixtures.
2317.0 <i>18</i> 3046.7 <i>10</i>	3/2 ^{-#} (15/2) ^{-#}		configuration: dominant $\nu(2g_{9/2})^{+1} \otimes 3^{-}$.
3091.86 20 3524.21 <i>19</i>	$(17/2^{-})^{\#}$ $(19/2^{-})$		configuration: $\nu(2g_{9/2}^{+2}, 3p_{1/2}^{-1})$. configuration: $\nu(2g_{9/2}^{+1})\pi(1h_{9/2}, 3s_{1/2}^{-1})$.
3810.0 <i>3</i> 3842.00 <i>14</i>	$(21/2^{-})$ $(21/2^{+})$		likely configuration= $\nu(2g_{9/2}, l_{11/2}, 3p_{1/2}^{-1})$. configuration: dominant $\nu(1j_{15/2})^{+1} \otimes 3^{-1}$ with $\nu(2g_{9/2})^{+1} \otimes 3^{-1} \otimes 3^{-1}$ admixtures. $T_{1/2}=16$ ps, if B(E3,2419.3 γ)=50 W.u. (2000Re12).
4328.90 17	(23/2 ⁺)		configuration: likely $v(2g_{9/2}, 1j_{15/2}, 3p_{1/2}^{-1})$. The fully aligned, $J^{\pi} = 25/2^+$ state is expected to be much higher in energy, because the $v(2g_{9/2})^{+1} \otimes 3^-$ admixture in the $v1j_{15/2}$ orbital is blocked by the Pauli principle
4583.60 20 4631.6 5 4698.3 3 4755.8 4 5873.9 4 6099.4 5			

[†] From a least-squares fit to $E\gamma$.

[‡] From 1998Re05, unless otherwise stated.

[#] From Adopted Levels.

$\gamma(^{209}\text{Pb})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Comments
172.2 3	12 2	4755.8		4583.60		
225.5 2	10 2	6099.4		5873.9		
254.7 1	33 <i>3</i>	4583.60		4328.90	$(23/2^+)$	
285 1		2317.0	$3/2^{-}$	2032.0	$1/2^{+}$	
285.8 <i>3</i>	92	3810.0	$(21/2^{-})$	3524.21	$(19/2^{-})$	
317.7 2	18 2	3842.00	$(21/2^+)$	3524.21	$(19/2^{-})$	
369.4 2	92	4698.3		4328.90	$(23/2^+)$	
432.2 <i>3</i>	31 10	3524.21	$(19/2^{-})$	3091.86	$(17/2^{-})$	E_{γ}, I_{γ} : Doublet.
^x 458						E_{γ} : above the 3842-keV level, in cascade with 790 γ .
465 1		2032.0	$1/2^{+}$	1567.0	5/2+	

Continued on next page (footnotes at end of table)

 $^{209}_{82}\text{Pb}_{127}\text{-}2$

$(HI,xn\gamma)$ 1998Re05 (continued)

γ ⁽²⁰⁹Pb) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
486.9 1	83 5	4328.90	$(23/2^+)$	3842.00	$(21/2^+)$	
643.5 [‡] 2	13 [‡] 2	1422.70	$15/2^{-}$	779.20	$11/2^{+}$	
718.2 3	10 <i>1</i>	3810.0	$(21/2^{-})$	3091.86	$(17/2^{-})$	
779.2 [‡] 2	14 [‡] 2	779.20	$11/2^{+}$	0	9/2+	
789.6 4	51	4631.6		3842.00	$(21/2^+)$	
^x 790						E_{γ} : above the 3842-keV level, in cascade with 458 γ .
^x 1100						E_{γ} : above the 3842-keV level, likely feeding the 4329-keV level.
1118.1 2	11 2	5873.9		4755.8		
^x 1178						E_{γ} : above the 3842-keV level.
1422.7 [‡] 1	100 [‡] 7	1422.70	$15/2^{-}$	0	$9/2^{+}$	
1567 <i>1</i>		1567.0	$5/2^{+}$	0	$9/2^{+}$	
1624 <i>1</i>	≤5	3046.7	$(15/2)^{-}$	1422.70	$15/2^{-}$	
1669.1 2	33 <i>3</i>	3091.86	$(17/2^{-})$	1422.70	$15/2^{-}$	
^x 1910						E_{γ} : feeds the 1423-keV level.
^x 2020						E_{γ} : feeds the 1423-keV level.
2101.4 3	17 2	3524.21	$(19/2^{-})$	1422.70	$15/2^{-}$	•
2419.3 <i>1</i>	100 7	3842.00	$(21/2^+)$	1422.70	15/2-	Note that B(E3)(W.u.)=50 is expected from shell-model calculations and systematics arguments (2000Re12).

[†] From 1998Re05. [‡] in coincidence with the 2419.3 γ . ^{*x*} γ ray not placed in level scheme.

 $^{209}_{82}{\rm Pb}_{127}$