²²³Ra ¹⁴C decay **1989Br34,1995Ho11,1990Hu07**

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013	

Parent: ²²³Ra: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=11.43$ d 5; $Q(^{14}C)=31829$ 3; $\%^{14}C$ decay=7.7×10⁻⁸ 13

²²³Ra-J^{π},T_{1/2}: From Adopted Levels of ²²³Ra.

²²³Ra-Additional information 1.

²²³Ra-Q(¹⁴C): deduced from masses in 2012Wa38 (evaluators).

 223 Ra- 14 C decay: Unweighted average of 8.9×10^{-8} % 4 (1995Ho11) and 6.4×10^{-8} % 4 (1989Br34).

1989Br34: ²²³Ra activity from a thin and intense ²²⁷Th source. Measured ¹⁴C energies and intensities. Charged particles were detected by a semiconductor, FWHM=110 keV for ¹⁴C, FWHM=16-17 keV for α particles. The energy scale was calibrated with a ¹⁴C beam scattered on a gold target and measured at θ =30°, which has the same energy as that of the ¹⁴C emitted by ²²³Ra.

1995Ho11: ²²³Ra source was produced from the ISOLDE mass-separator. Charged particles were detected by a Si detector. Measured σ . Deduced levels.

1990Hu07 and 1990Hu02 have interpreted ¹⁴C emission in terms of a cluster formation mechanism, and calculated hindrance factors for the ¹⁴C groups that populate the g.s. and some low-lying excited levels in ²⁰⁹Pb. The low hindrance factors of 3.9 and 4.6 for the ¹⁴C groups that populate the 779- (configuration= $\nu(1i_{11/2})^{+1}$) and 1423-keV (configuration= $\nu(1j_{15/2})^{+1}$) levels in ²⁰⁹Pb, respectively, are consistent with the assignment of 3/2+(-0.1,0.6) (3/2[631], 3/2[761]) to ²²³Ra g.s.. The Nilsson orbitals involved in this single-particle configuration also originate from the $1i_{11/2}$ and $1j_{15/2}$ spherical shells.

Others: 1992Ar02, 1991Ho15, 1990We01, 1985Al28, 1985Ku24, 1985Pr01, 1984Al34, 1984Ga38, 1984Ro30.

²⁰⁹Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	9/2+	$E(^{14}C)=29.8$ MeV 2 (1985Ku24), I(^{14}C)=15 3 (1989Br34), Hf(^{14}C)=583 (1990Hu07). Other: I(^{14}C)=18 (1995Ho11).
779	11/2+	E(level): from 1989Br34. I(14 C)=81 6 (1989Br34), Hf(14 C)=3.9 (1990Hu07). Other: I(14 C)=82 (1995Ho11).
1423 1567 2032	15/2 ⁻ 5/2 ⁺ 1/2 ⁺	$I(^{14}C)=4.0$ (1989Br34), $Hf(^{14}C)=4.6$ (1990Hu07).

[†] Rounded-off values from Adopted Levels.

[‡] From Adopted Levels.