²⁰⁸Pb(t,d) **1969Ig02**

	His	story	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Chen # and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013

Target ²⁰⁸Pb $J^{\pi}(g.s.)=0^{+}$.

1969Ig02: E=20 MeV triton beam was produced from the Los Alamos three-stage Van de Graaff accelerator. A 200 μ g/cm² enriched ²⁰⁸Pb target on a 40 μ g/cm² carbon backing was used. Reaction products were detected with a counter telescope of a silicon surface barrier Δ E detector and a lithium-drifted E detector, FWHM=37 keV (for cross sections) and with a Elbek type magnetic spectrograph, FWHM=14 keV. Measured $\sigma(\theta)$. Deduced level, L, spectroscopic factors from DWBA analysis.

Other: 1976Fr22.

²⁰⁹Pb Levels

E(level)	L^{\ddagger}	S [†]	Comments
0.0	4	0.93	S: for configuration= $v(2g_{9/2})^{+1}$.
781 <i>5</i>	6	1.05	S: for configuration= $\nu(1i_{11/2})^{+1}$.
1428 5	7	0.60	S: for configuration= $\nu(1j_{15/2})^{+1}$.
1573 <i>5</i>	2	1.02	S: for configuration= $\nu(3d_{5/2})^{+1}$.
2039 <i>5</i> 2153 <i>5</i>	0	1.00	S: for configuration= $\nu(4s_{1/2})^{+1}$.
2496 <i>5</i>	4	1.05	S: for configuration= $v(2g_{7/2})^{+1}$.
2542 5	2	0.96	S: for configuration= $\nu(3d_{3/2})^{+1}$.
2592 5			$\sigma(\theta)$ is isotropic. Both the magnitude and the shape of $\sigma(\theta)$ are well reproduced for configuration= $\pi(2h_{11/2})^{+1}$ (1969Ha13).
2996 5			5
3049 <i>5</i>			
3305 10			
3373 10			
3800 <i>10</i>			
3998 10			
4075 10			
4094 10			
4146 10			
4283 <i>10</i> 4322 <i>10</i>			
5136 10			
5160 10			
210010			

[†] Calculated using local zero-range DWBA with normalization factor N=4.15 and neutron parameters radius=1.25 fm, diffuseness=0.65 fm, and spin-orbit coupling strength=25. Neutron well depth chosen based on separation-energy approximation. The above normalization factor was chosen so that the average spectroscopic value for the single-particle states, excluding the $1j_{15/2}$ state, is unity. $\sigma(\theta)$ is well fit by a distorted-wave calculation for the indicated single-particle state. $d\sigma/d\Omega(\exp)=N\times(2J+1)\times S\times d\sigma/d\Omega(DWBA)$ (1969Ig02).

[‡] From DWBA fits to measured $\sigma(\theta)$ (1969Ig02).