²⁰⁸Pb(d,p),(pol d,p) 1974Ko20,1973Vi06,1978Ba13

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013	

Target ²⁰⁸Pb $J^{\pi}(g.s.)=0^+$.

- 1974Ko20: E=20 MeV deuteron beam was produced from the Yale tandem accelerator. Targets were 100 μ g/cm² 99.9% enriched ²⁰⁸Pb evaporated on carbon foils. Reaction products were momentum analyzed with the Yale multigap spectrograph (FWHM=10-15 keV). Measured $\sigma(\theta)$. Deduced levels, J^{π} , L, spectroscopic factors from DWBA analysis.
- 1973Vi06: E(pol d)=12.3 MeV beam was produced from the University of Wisconsin tandem. A 15 mg/cm² lead target was used. Reaction products were momentum analyzed with a magnetic spectrograph, FWHM=70 keV. Measured $\sigma(\theta)$, analyzing powers. Deduced levels, J^{π} , spectroscopic factors from DWBA analysis.
- 1978Ba13: E(pol d)=12.3 MeV deuteron beam was produced from the University of Birmingham Radial Ridge Cyclotron. A 8 mg/cm² 99.1% enriched ²⁰⁸Pb target was used. Protons were detected in six telescopes of a surface barrier silicon detector (ΔE) and a Li-drifted detector (E). Measured $\sigma(\theta)$, analyzing powers. Deduced levels, J^{π} , L from DWBA analysis.

1967Do02: E=8 MeV beam was from the Heidelberg tandem. Measure $\sigma(\theta)$.

Deduced levels, spectroscopic factors from DWBA analysis.

1967Mu16: E=14.8, 20.1, 24.8 MeV beams were produced from the Michigan 83-inch cyclotron. Reaction products were momentum analyzed with a magnetic spectrograph. Measured $\sigma(\theta)$. Deduced levels, spectroscopic factors from DWBA analysis. 20.1-MeV data presented here.

1968Cr04: E=8 MeV beam was produced from the ANU tandem. Reaction products were momentum analyzed with a Buechner broad-range spectrograph. Measured $\sigma(\theta)$. Deduced levels, L, spectroscopic factors from DWBA analysis.

1969El02: E=12 MeV beam was produced from the Niels Bohr Institute tandem. Protons were detected with a Si(Li) counter, FWHM<50 keV. Measured $\sigma(\theta)$. Deduced levels, spectroscopic factors from DWBA analysis.

- 1969Je01: E=8-18.7 MeV beams were produced from the Oxford tandem. Reaction products were momentum analyzed with the Oxford multichannel spectrograph. Measured $\sigma(\theta)$. Deduced levels, J^{π} , L, spectroscopic factors from DWBA analysis. 18.7-MeV data presented here.
- 1969Va02: E=8.7-15.8 MeV beams were produced from the 110 cm cyclotron of the CSIR. Protons were detected with a Δ E-E telescope of a silicon surface barrier detector and a Li-drifted detector. Measured $\sigma(\theta)$. Deduced levels, spectroscopic factors from DWBA analysis. Average of spectroscopic data presented here.
- 1973Ca04: E(pol d)=12.3, 15 MeV beams were produced from the Los Alamos tandem. Protons were detected with a ΔE -E telescope of a surface barrier silicon detector and a Li-drifted detector, FWHM \approx 26 keV. Measured $\sigma(\theta)$, analyzing powers. Deduced levels, J^{π} , spectroscopic factors from DWBA analysis.
- 1977St33: E=7-11 MeV beams were produced from the FN tandem at Universitat zu Koln. Protons were detected with four silicon surface barrier detectors, FWHM=15 keV. Measured $\sigma(\theta)$. Deduced levels, spectroscopic factors from DWBA analysis.
- 1980St18: E(pol d)=7, 8, 9 MeV. Measured $\sigma(\theta)$, analyzing powers. Deduced levels, J^{π} . ²H deduced asymptotic d- to s-state amplitude ratio.
- **1984Go10:** E(pol d)= 9 MeV. Measured $\sigma(\theta)$, analyzing powers.
- **1985MuZX**: E(pol d)=12.3, 15 MeV. Measured $\sigma(\theta)$, analyzing powers.
- 1977Kn05: E(pol d)=5.5 MeV. Measured $\sigma(\theta)$, analyzing powers.
- 1970De21: E(pol d)=12.3 MeV. Measured $\sigma(\theta)$, analyzing powers.
- 1970Ki09: E(pol d)=11-30 MeV. Measured $\sigma(\theta)$, analyzing powers.
- **1990Ro02**: E(pol d)=6, 7 MeV. Measured $\sigma(\theta)$, analyzing powers.
- **1998Hi05**: E(pol d)=22.0 MeV. Measured $\sigma(\theta)$, analyzing powers.

2001Li41: E=8 MeV. Measured $\sigma(\theta)$.

Others: 1962Er01, 1962Mu05, 1967Mu16, 1968Be07, 1970HeZI, 1973LuZN, 1977JaZP, 1977Ma04, 2005Ya02, 2010Pa39.

1978Ba13 measured tensor analyzing powers for the g.s., 1565, and 2033 levels. They confirm the J dependence of these analyzing powers. See also 1985MuZX.

Summary of strengths: 1969Je01 and 1969Va02 give more than one set of C²S values corresponding to different choices of optical-model parameters. For each of these authors, the compilers have chosen the set such that the C²S values are from a zero-range, local DWBA calculation with neutron parameters radius=1.20-1.25 fm, diffuseness=0.60-0.65, spin-orbit coupling=25-32, and deuteron well depth and radius≈100 MeV and≈1.15 fm, respectively. This choice of parameters is consistent with that used by the other authors and puts all the C²S values on roughly the same footing. 1977St33 extract asymptotic normalization factors for

208 Pb(d,p),(pol d,p) 1974Ko20,1973Vi06,1978Ba13 (continued)

the levels given in the table below. The authors point out that these factors are less sensitive than are the C²S to the choice of optical model parameters for the bound neutron

	C^2S						
	g.s.	779	1424	1565	2033	2492	2537
	2g9/2	1i11/2	1j15/2	3d5/2	4s1/2	2g7/2	3d3/2
1967Do02 1967Mu16& 1968Cr04 1969E102 1969Je01# 1969Va02	0.88 0.77 0.99 0.78 0.66 1.08	1.52 0.78 0.96 0.75	1.38 0.79 0.53 0.71	1.06 1.05 1.10 0.88 0.62 1.13	0.97 0.90 1.05 0.88 0.70 1.00	1.04 1.08 0.96 0.78 0.81 1.22†	0.99 1.07 1.00 0.88 0.88
1973Ca04	0.91	1.2	0.66	0.89	0.91	1.1	0.97
1974Ko20	0.83	0.86	0.58	0.98	0.98	1.05	1.07
1987Ro20@	0.8	0.9	0.53	0.85	0.8	0.9	0.74

& for $E_t{=}20.3~\text{MeV}.\text{See }1977\text{Ma04}$ for a reanalysis of the data of theseauthors

See 1977Ma04 for a reanalysis of the 24.8-MeV data of these authors

@ Reanalysis of data of 1974Ko20 using a formalism that includes breakup of the deuteron

† Value for unresolved 2492+2537 levels

E(level) [†]	$J^{\pi \ddagger}$	L [#]	$C^2S^{\textcircled{@}}$	Comments
0.0	$9/2^{+}$	4	0.83	C ² S: for configuration= $\nu(2g_{9/2})^{+1}$.
779 5	$11/2^+$	6	0.86	C ² S: for configuration= $\nu(1i_{11/2})^{+1}$.
1424 5	$15/2^{-}$	7	0.58	C ² S: for configuration= $v(1_{j_{15/2}})^{+1}$.
1565 5	$5/2^{+}$	2	0.98	C ² S: for configuration= $\nu(3d_{5/2})^{+1}$.
2033 5	$1/2^{+}$	0	0.98	C ² S: for configuration= $\nu(4s_{1/2})^{+1}$.
2152 5		1		C ² S: 0.0067 if configuration= $\nu(3p_{1/2})^{-1}$, 0.0036 if $\nu(4p_{1/2})^{+1}$.
2319 5		1		E(level): 2310 keV 5 (1969Je01).
				C ² S: 0.0074 if configuration= $\nu(3p_{3/2})^{-1}$, 0.0045 if $\nu(4p_{3/2})^{+1}$.
2424? 5				
2461 5		(2,3)		C ² S: 0.0012 if configuration= $\nu(2f_{5/2})^{-1}$, 0.0013 if $\nu(3f_{5/2})^{+1}$.
2492 5		4	1.05	C ² S: for configuration= $\nu(2g_{7/2})^{+1}$.
2537 5		2	1.09	C ² S: for configuration= $\nu(3d_{3/2})^{+1}$.
2592 5		4,5	0.0185 ^{&}	J^{π} : magnitude of $\sigma(\theta)$ is reproduced by a distorted wave calculation for configuration $h_{11/2}$, but the shape is not well reproduced (1969Ha13 as reported by 1969El02).
2738 5		2,3		C ² S: 0.0027 if configuration= $\nu(2f_{5/2})^{-1}$, 0.0005 if $\nu(3f_{5/2})^{+1}$.
2866 5		(2,3)		C ² S: 0.0010 if configuration= $\nu(2f_{5/2})^{-1}$, 0.0002 if $\nu(3f_{5/2})^{+1}$.
3026 5		4,5	0.0090 ^a	
3052 5		7	0.070 <mark>b</mark>	
3075 5		1		C^2S : 0.0021 if configuration= $\nu(3p_{3/2})^{-1}$, 0.0012 if $\nu(4p_{3/2})^{+1}$.
3203 5		2,3		C ² S: 0.0012 if configuration= $\nu(2f_{7/2})^{-1}$, 0.0007 if $\nu(3f_{7/2})^{+1}$.
3309 5		4,5	0.0050 <mark>&</mark>	
3365.5		4.5	0.0087 <mark>&</mark>	
3389 5		.,.		
3414 5				
3430 5				
3490 5		2,3		C ² S: 0.0017 if configuration= $\nu(2f_{7/2})^{-1}$, 0.0010 if $\nu(3f_{7/2})^{+1}$.
3556 5		7	0.032 ^b	E(level): 1969Je01 report a level at 3567 keV 10.
3615 5				•
3656 5		2,3		C ² S: 0.0070 if configuration= $\nu(2f_{5/2})^{-1}$, 0.0044 if $\nu(3f_{5/2})^{+1}$.
3681 5		(1)		C ² S: 0.0048 if configuration= $\nu(3p_{1/2})^{-1}$, 0.0029 if $\nu(4p_{1/2})^{+1}$.

Continued on next page (footnotes at end of table)

208 Pb(d,p),(pol d,p) 1974Ko20,1973Vi06,1978Ba13 (continued)

²⁰⁹Pb Levels (continued)

$E(level)^{\dagger}$	L [#]	$C^2S^{@}$	Comments
3716.5	7	0.032 ^b	
3904 5	(2,3)	0.0113 ^c	E(level): 3917 keV 20 from 1969Je01.
3947 5			E(level): 3955 keV 20 (1969Je01).
			L,C ² S: fit by authors to L=3 with S=0.0161 for configuration= $\nu(3f_{7/2})^{+1}$; however, this peak is a doublet in $(d,p\gamma)$.
3985 5	(2,3)	0.0178 ^C	
4008 5	(2,3)	0.0070 ^C	E(level): 4000 keV 20 (1969Je01).
4022 5	(2,3)	0.0038 ^c	
4075 5	(2,3)	0.0030 ^c	
4096 5	(2,3)	0.012	C ² S: if configuration= $\nu(3d_{5/2})^{+1}$.
4112 5	(2,3)	0.0125 ^c	E(level): 4123 keV 20 (1969Je01).
4137 5	(2,3)	0.0078 ^c	E(level): 4145 keV 20 (1969Je01).
4166 5	(5)	0.0023 <mark>&</mark>	E(level): 4175 keV 20 (1969Je01).
4211 7			E(level): 4216 keV 5 (1969El02).
4239? 10			
4295 5	(0,1)	0.093	E(level): 4298 keV 5 (1969El02), 4304 keV 20 (1969Je01).
			C^2S : configuration= $\nu(4p_{3/2})^{+1}$.
4348 5			
4380 5			
4430 9	(0.4)	0.400	E(level): 4415 keV 20 (1969)e01).
4464 7	(0,1)	0.109	C ² S: configuration= $\nu(4s_{1/2})^{+1}$.
4502 10			
4550 10			
4552 10			
4612 10			
4629 10			
4661 10			
4676 10			
4706 10			
4726 10			
4747 10			
4764 10			
4799 10			
4864 10			
4885 10			
4920 10			
4940 10			
4986 10			
5028 10			
5061 10			
5085 10			
5102 10			
5153 10			
5170 10			

[†] From 1974Ko20, unless otherwise noted. [‡] From L+1/2 or L-1/2 transfers from analyzing power fits to measured cross sections (1973Vi06, 1978Ba13).

[#] From 1974Ko20, based on DWBA analysis. Except for the single-particle states, L(n)=2 cannot be distinguished from L(n)=3, nor can L(n)=4 be distinguished from L(n)=5. For some levels the L(n) ambiguities can be removed by comparison with L(t,p) or L(n) in (p,d). 1974Ko20 point out that, for the two-particle one-hole states below ≈ 4 MeV, only negative-parity states are

²⁰⁸**Pb(d,p),(pol d,p)** 1974Ko20,1973Vi06,1978Ba13 (continued)

²⁰⁹Pb Levels (continued)

expected (except for the configuration= $\nu(1i_{13/2})^{-1}$ state) so that L(n)=odd. ^(a) From 1974Ko20, S=(1/(2J+1))($\sigma(\theta)^{exp}/\sigma(\theta)^{DWBA}$)/N, calculated using local zero-range DWBA with normalization factor 1.5 and neutron parameters radius=1.23 fm, diffuseness=0.65 fm, and spin-orbit coupling strength=25. The neutron well depth was chosen based on the separation-energy approximation. The authors also quote strengths based on a deuteron breakup potential.

[&] If configuration= $\nu(2h_{11/2})^{+1}$.

^{*a*} If configuration= $\nu(1h_{9/2})^{-1}$.

^b If configuration= $\nu(1j_{15/2})^{+1}$.

^c If configuration= $\nu(3f_{7/2})^{+1}$.