	²⁰⁸ Pb (²⁰ Ne , ¹⁹ N	le) 1990Fo04	
	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013

E=500, 600 MeV ²⁰Ne beam was produced from the K500 superconducting cyclotron at Michigan State University. A 99.9% enriched 3.0 µg/cm² thick ²⁰⁸Pb target was used. Reaction products were momentum analyzed with the S320 broad range magnetic spectrograph, FWHM=1-2 MeV. Measured σ(fragment E,θ). Deduced structure characteristics from DWBA analysis. The spectra consist of broad peaks at≈1.5 MeV and≈10 MeV. On the basis of DWBA calculations, the authors suggest that the main components in the peak at 1.5 MeV are the 11/2⁺ state at 779, the 15/2⁻ state at 1423, and possibly the 9/2⁺ ground state. The authors suggest that the peak at 10 MeV is due mainly to neutron transfer to high-spin orbitals such as 1k_{17/2}.