²⁰⁸Pb(¹⁶O,¹⁵O) **1975Be40**

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013	

1975Be40: E=139 MeV ¹⁶O beam was produced from the Lawrence Berkeley Laboratory 88-inch cyclotron. Targets were 100-150 μ g/cm² enriched ²⁰⁸Pb on carbon backings. Reaction products were momentum analyzed with an energy-loss magnetic spectrometer, FWHM=180-240 keV. Measured $\sigma(\theta)$. Deduced levels, spectroscopic factors from DWBA analysis. Others:

1978O102: E=312.6 MeV beam was produced from the Berkeley 88-inch cyclotron. Thick targets of 1-3 mg/cm² ²⁰⁸Pb were used. Reaction products were momentum analyzed with a quadrupole-sextupole-dipole (QSD) magnetic spectrometer, FWHM=300 keV. Measured $\sigma(\theta)$. Deduced levels, spectroscopic factors from DWBA analysis.

1987Me05: E=793 MeV beam was produced from the GANIL facility. A 300 μ g/cm² ²⁰⁸Pb on a 30 μ g/cm² carbon backing was used. Reaction products were momentum analyzed with the magnetic spectrometer, FWHM=215 keV (see also 1986Be41).

Measured $\sigma(\theta)$. Deduced levels, spectroscopic factors from DWBA analysis.

1975Be40 deduce rms radius difference $\langle n \rangle - \langle p \rangle = 0.1$ fm 1.

²⁰⁹Pb Levels

E(level) [†]	S [‡]	Comments		
0.0	0.89	S: for configuration= $\nu(2g_{9/2})^{+1}$.		
800 50	0.83	S: for configuration= $\nu(1i_{11/2})^{+1}$.		
1450 50	0.75	S: for configuration= $\nu(1j_{15/2})^{+1}$. Value given is corrected for a small contribution (theory value of 0.91 assumed) from unresolved $\nu(3d_{5/2})^{+1}$ level at 1567 keV.		
2050 50	≤9.8 [#]	S: for configuration= $\nu(4s_{1/2})^{+1}$.		
2490 50	1.7 [#]	S: for configuration= $\nu(2g_{7/2})^{+1}$. Value given is corrected for a small contribution (theory value of 0.90 assumed) from unresolved $\nu(3d_{3/2})^{+1}$ level at 2538 keV.		
3050 50	0.07 [#]	S: for configuration= $\nu(1j_{15/2})^{+1}$.		
≈3800 5000 <i>50</i>	0.25 [#]	S: if levels in the broad peak 3500-4100 keV are $v(1j_{15/2})^{+1}$.		
5880 <i>50</i> 6320 <i>50</i>				

[†] From 1975Be40.

[‡] From 139-MeV data of 1975Be40 (finite-range DWBA) as recalculated by 1978Ol02. The values are normalized to S(g.s.)=0.89, the theoretical value from 1973Ri13. See 1978Ol02 and 1987Me05 for values of s deduced from data taken at higher bombarding energies. 1975Be40 state that strength \leq 0.1 for any high-spin J=L+1/2 single-particle fragments in the energy range 5-10 MeV.

[#] Approximate value since fit to data is poor.