²⁰⁸Pb(¹¹B, ¹⁰B) **1974Fo22**

History

Type Author Citation Literature Cutoff Date
Full Evaluation J. Chen # and F. G. Kondev NDS 126, 373 (2015) 30-Sep-2013

Target 208 Pb $J^{\pi}(g.s.)=0^{+}$.

1974Fo22: E=72.2 MeV 11 B beam was produced from the Oak Ridge isochronous cyclotron. Target was 100 μ g/cm² 208 Pb evaporated onto a 40 μ g/cm² carbon foil. Reaction products were momentum analyzed with an Elbek spectrograph and detected by an proportional counter, FWHM=185-250 keV. Measured $\sigma(\theta)$. Deduced levels, spectroscopic factors from DWBA analysis. Others: 2003Sa54, 1973An14.

E: From 1974Fo22.

²⁰⁹Pb Levels

E(level)	S [†]	Comments
0.0	1.38	S: if configuration= $\nu(2g_{9/2})^{+1}$.
780	1.56	S: if configuration= $\nu(1i_{11/2})^{+1}$.
1420‡		
1570 [‡]		
2490	1.56	S: If configuration= $\nu(2g_{7/2})^{+1}$. $\leq 10\%$ of this strength is estimated by the authors as being due to the unresolved
		$\nu(3d_{3/2})$ level at 2540 keV.

[†] Calculated using finite-range DWBA with neutron parameters deduced from sub-Coulomb stripping measurements. $S(11\beta=^{10}B+n)$ is taken to be 1.09. Some contribution to the strengths for the $\nu(i_{11/2})$ and $\nu(g_{7/2})$ levels could be coming from excited ^{10}B states at 717 and 1740 keV (1974Fo22).

[‡] Unresolved in $\sigma(\theta)$.