²¹³Ac *α* decay **1968Va04,2000He17**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013			

Parent: ²¹³Ac: E=0.0; $J^{\pi}=9/2^{-}$; T_{1/2}=738 ms 16; Q(α)=7501 6; % α decay \approx 100.0

²¹³Ac-J^{π}: Assuming a favored α -decay to ²⁰⁹Fr g.s. (J^{π}=9/2⁻).

²¹³Ac-Q(α): From E α =7360 keV 6.

1968Va04: ²¹³Ac activities were produced by the ¹⁹⁷Au(²⁰Ne,6n), ²⁰⁹Bi(¹²C,8n) and ²⁰³Tl(¹⁶O,8n) reactions at beam energies of 99 MeV ²⁰Ne, 118 MeV ¹²C, and 112 and 135 MeV ¹⁶O from the Berkeley heavy-ion linear accelerator (HILAC). α particles were detected by a Si(Au) surface-barrier detector. Measured single E α , α (t).

2000He17: ²¹³Ac activities were produced using various heavy-ion reactions at GSI. Reaction products were separated by a velocity filter (SHIP). 16-strip position-sensitive silicon detector was used to implant the recoils and correlate subsequent α decay events. Measured single $E\alpha$, $\alpha(t)$.

²⁰⁹Fr Levels

$\frac{\mathrm{E(level)}}{0.0}$	$\frac{\mathbf{J}^{\pi}}{9/2^{-}}$	$\frac{T_{1/2}}{50.5 \text{ s } 7}$	$\frac{Comments}{J^{\pi},T_{1/2}: \text{ from Adopted Levels.}}$	
α radiations				
Eα	E(level)	$I\alpha^{\ddagger}$	HF^{\dagger}	Comments
7360 6	0.0	100	≈0.94	$E\alpha$: weighted average of 7356 <i>10</i> (2000He17) and 7364 <i>8</i> (1968Va04). The value from 1968Va04 has been increased by 2 keV by the evaluators to account for the changes in calibration energies, as recommended in 1991Ry01. Other: 7420 (1961Gr42).

[†] $r_0(^{209}\text{Fr})=1.471$ 11, weighted average of $r_0(^{208}\text{Rn})=1.466$ 8 and $r_0(^{210}\text{Ra})=1.492$ 16, both deduced by using HF=1. [‡] For absolute intensity per 100 decays, multiply by ≈ 1.0 .

1