$^{197}Au(^{16}O, 4n\gamma)$ 2009Dr04

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013

2009Dr04: E=95 MeV ¹⁶O beam was produced from the 14 UD Pelletron accelerator. A 5.5 mg/cm² thick target was used. γ -rays were detected with the caesar array comprised of six Compton-suppressed high-purity Ge detectors and with two LEPS detectors; conversion electrons were detected with a superconducting solenoid and a Si(Li) detector. Measured E γ , I γ . $\gamma\gamma$ -coin, $\gamma(\theta)$, $\gamma(t)$, $\gamma\gamma$ (t), I(ce). Deduced levels, J^{π}, T_{1/2}, γ -multipolarities, conversion coefficients, transition strengths, configurations. Comparisons with shell-model calculations.

Others:

2011Ka37: Measured $T_{1/2}$ for E=2130 level. 1976BaXJ: Measured $\sigma(E)$ of the ¹⁹⁷Au(¹⁶O,4n) reaction.

1970Bj02: No SF isomers with 2 ns $\leq T_{1/2} \leq 2000$ s ($\sigma < 0.07 \ \mu$ b) observed from search for fission fragments following bombardment of ¹⁹⁷Au with 85⁻ to 165-MeV ¹⁶O.

²⁰⁹Fr Levels

configuration proposed by 2009Dr04.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	9/2-	50.5 s 7	$J^{\pi}, T_{1/2}$: from Adopted Levels.
			$configuration = \pi (h_{9/2})^{+1}$.
606.06 18	$13/2^{-}$		configuration=dominant $\pi(h_{9/2})^{+1} \otimes \nu(f_{5/2})_{2^{+}}^{-2}$.
622.64 18	$11/2^{-}$		configuration=dominant $\pi(h_{9/2})^{+1} \otimes \nu(f_{5/2})_{2^{+}}^{-2}$.
1088.88 21	$15/2^{-}$		configuration=dominant $\pi(h_{9/2})^{+1} \otimes \nu(f_{5/2})_{4^{+}}^{-2}$.
1224.97 23	$17/2^{-}$		configuration=dominant $\pi(h_{9/2})^{+1} \otimes \nu(f_{5/2})_{4^{-1}}^{-2}$.
1330.46 25	$17/2^{-}$		configuration= $\pi(h_{9/2})^{+3}$.
1763.7 <i>3</i>	$21/2^{-}$		configuration= $\pi(h_{9/2})^{+3}$.
1928.6 4	$23/2^{-}$	<1.0 ns	configuration= $\pi((h_{9/2})^{+2}(f_{7/2})^{+1})^3$.
2130.5 4	25/2+	35 ns <i>3</i>	T _{1/2} : weighted average of 33.3 ns 21 (2009Dr04) and 39 ns 3 (2011Ka37), both using $409\gamma+515\gamma+619\gamma)\gamma-202\gamma(\Delta t)$.
			possible configuration= $\pi(h_{9/2})^{+1} \otimes \nu((f_{5/2})^{-1}(i_{13/2})^{-1})_{Q}^{2}$.
2175.9 4	$25/2^+$	<0.69 ns	configuration= $\pi((h_{9/2})^{+2}(i_{13/2})^{+1})^3$.
2245.1 4	$23/2^{(+)}$		
2407.6 5	$27/2^{+}$		configuration= $\pi((h_{9/2})^{+2}(i_{13/2})^{+1})^3$.
2424.7 5	$29/2^{+}$	<0.69 ns	configuration= $\pi((h_{9/2})^{+2}(i_{13/2})^{+1})^3$.
2559.1 5	$25/2^{(-)}$		configuration= $\pi(h_{9/2})^{+5}$.
2599.1 5	$27/2^{-}$		configuration= $\pi((h_{9/2})^{+4}(f_{7/2})^{+1})^5$.
2696.7 5	$27/2^{+}$		configuration= $\pi(h_{9/2})^{+1} \otimes \nu((f_{5/2})^{-1}(i_{13/2})^{-1})_{0}^2$.
2717.4 5	(29/2)		
2857.7? 6			
2903.3? 5	$29/2^+$		
2917.9 5	$29/2^{(+)}$		
2937.8 5	(27/2)		
3027.4 6	$31/2^{+}$		configuration= $\pi((h_{9/2})^{+4}(i_{13/2})^{+1})^5$.
3115.4 5	$33/2^{+}$		configuration= $\pi((h_{9/2})^{+4}(i_{13/2})^{+1})^5$.
3127.4 6	$31/2^{-}$		configuration= $\pi((h_{9/2})^{+4}(f_{7/2})^{+1})^5$.
3153.1 5	31/2		J^{π} : negative parity listed for this level in Table I, but none given in the level scheme, by 2009Dr04.
3234.5 5	$31/2^{(+)}$		
3369.6 6	$33/2^{+}$		
3409.4 6	$33/2^{(+)}$		
3415.9 6	33/2 ⁽⁻⁾	≈62 ns	T _{1/2} : from 181.4 γ (t), consistent with 809.8 γ (t), in 2009Dr04. possible configuration= π (h _{9/2}) ⁺¹ $\otimes \nu$ ((i _{13/2}) ⁻²) ₁₂₊ .

Continued on next page (footnotes at end of table)

¹⁹⁷Au(¹⁶O,4nγ) **2009Dr04** (continued)

²⁰⁹Fr Levels (continued)

E(level) [†]	J <i>π</i> ‡	T _{1/2} ‡	Comments
3630.9 6	37/2+		configuration= $\pi((h_{9/2})^{+4}(i_{13/2})^{+1})^5$.
3923.4 7	$35/2^{(+)}$		
4039.6 6	33/2 39/2 ⁺		configuration= $\pi((h_{9/2})^{+3}(f_{7/2})^{+1}(i_{13/2})^{+1})^5$.
4166.4 7	(37/2)		
4324.3 7	$41/2^+$		configuration= $\pi((h_{9/2})^{+3}(f_{7/2})^{+1}(i_{13/2})^{+1})^5$.
4304.1 0	$\frac{39/2}{41/2^{(+)}}$		
4659.8 7	45/2-	420 ns 18	T _{1/2} : from 232 γ +409 γ +620 γ (t) in 2009Dr04. Selected γ 's as gates were not contaminated in the γ -ray spectra.
5046.2? 7			(113/2) (113/2)).
5069.3 7	(43/2)		
5194.6 7	$47/2^{(-)}$		
5399.5 7	(47/2) $49/2^{-}$		
5413.9? 7	- 1		
5480.3? 7 5488.5 7 5657.2 7 5765.2 7 5903.4 8	47/2 ⁻ 47/2 ⁽⁻⁾ (47/2) 49/2 ⁻		

[†] From a least-squares fit to $E\gamma$.

[‡] From 2009Dr04, unless otherwise stated. J^{π} are based on the deduced γ -ray transition multipolarities and observed multiple γ -ray decay branches, unless otherwise stated.

						¹⁹⁷ Au(¹⁶	Ο,4n γ) 2009	Dr04 (contin	ued)	
γ (²⁰⁹ Fr)										
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@a}$	α &	Comments	
(17.1 7)	0.40 8	2424.7	29/2+	2407.6	27/2+	[M1]		126 17	α (L)=2.9 4; α (M)=92 13 α (N)=24 4; α (O)=5.4 8; α (P)=0.87 12; α (Q)=0.049 7 E_{γ} : from level-energy difference. I_{γ} : from I(γ +ce)= 51 10, implied from the intensity balance, and α	
45.4 <i>3</i>	1.8 3	2175.9	25/2+	2130.5	25/2+	M1		28.3 7	$\begin{array}{l} \alpha(L)=21.5 \ 6; \ \alpha(M)=5.12 \ 13 \\ \alpha(N)=1.34 \ 4; \ \alpha(O)=0.300 \ 8; \ \alpha(P)=0.0482 \ 12; \ \alpha(Q)=0.00270 \\ 7 \end{array}$	
136.1 <i>3</i>	4.2 6	1224.97	17/2-	1088.88	15/2-	M1(+E2)	<0.4	5.7 3	Mult.: $\alpha(\exp)=28.0 \ 8.$ $\alpha(K)=4.5 \ 4; \ \alpha(L)=0.93 \ 5; \ \alpha(M)=0.225 \ 15$ $\alpha(N)=0.059 \ 4; \ \alpha(O)=0.0131 \ 8; \ \alpha(P)=0.00205 \ 8;$ $\alpha(Q)=0.000104 \ 7$ Mult., δ : from $\alpha(\exp)=7.0 \ 10$. Also A ₂ =-0.31 7.	
140.3 ^b 3 164.9 2	26.1 11	2857.7? 1928.6	23/2-	2717.4 1763.7	(29/2) 21/2 ⁻	M1+E2	0.44 +8-9	3.08 13	$\alpha(K)=2.37 \ 14; \ \alpha(L)=0.535 \ 12; \ \alpha(M)=0.131 \ 4$ $\alpha(N)=0.0343 \ 10; \ \alpha(O)=0.00755 \ 18; \ \alpha(P)=0.001165 \ 19;$ $\alpha(Q)=5.5\times10^{-5} \ 3$	
174.9 <i>3</i>	2.6 2	3409.4	33/2(+)	3234.5	31/2 ⁽⁺⁾	M1+E2	1.1 +4-3	1.8 4	Mult.,o: from $\alpha(\exp)=3.08$ 11. Also $A_2=-0.24$ 4. $\alpha(K)=1.2$ 4; $\alpha(L)=0.476$ 15; $\alpha(M)=0.122$ 6 $\alpha(N)=0.0320$ 16; $\alpha(O)=0.0069$ 3; $\alpha(P)=0.000981$ 16; $\alpha(Q)=2.8\times10^{-5}$ 8 Mult. δ_1 from $\alpha(\exp)=1.8$ 3. Also $A_2=-0.45$ 12	
181.4 <i>3</i>	1.3 2	3415.9	33/2 ⁽⁻⁾	3234.5	31/2 ⁽⁺⁾	E1(+M2)	≤0.15	0.25 14	Mult., α . from $\alpha(\exp) = 1.8$ 5. Also $A_2 = -0.45$ 12. $\alpha(K) = 0.19$ 10; $\alpha(L) = 0.05$ 4; $\alpha(M) = 0.013$ 9 $\alpha(N) = 0.0033$ 23; $\alpha(O) = 0.0007$ 5; $\alpha(P) = 0.00011$ 8; $\alpha(Q) = 5.E - 6$ 4 Mult. δ : from $\alpha(\exp) = 0.24$ 15. Also $A_2 = -0.19$ 20	
201.9 2	51.0 10	2130.5	25/2+	1928.6	23/2-	E1		0.0862	$\alpha(K)=0.0689 \ 10; \ \alpha(L)=0.01311 \ 19; \ \alpha(M)=0.00313 \ 5$ $\alpha(N)=0.000812 \ 12; \ \alpha(O)=0.000176 \ 3; \ \alpha(P)=2.64\times10^{-5} \ 4;$ $\alpha(Q)=1.141\times10^{-6} \ 17$ Mult.: $\alpha(\exp)\leq 0.14$, combined analysis for 201.9 γ and 247.3 γ , with the main contribution being from the latter. $A_2=-0.12 \ 5.$	
231.7 2	26.1 8	2407.6	27/2+	2175.9	25/2+	M1(+E2)	<0.4	1.26 8	$\alpha(\tilde{N})=1.01 \ 7; \ \alpha(L)=0.193 \ 4; \ \alpha(M)=0.0462 \ 8 \\ \alpha(N)=0.01210 \ 20; \ \alpha(O)=0.00270 \ 5; \ \alpha(P)=0.000428 \ 11; \\ \alpha(Q)=2.29\times10^{-5} \ 15 \\ M \ k = 0.50 \ 4 \\ \alpha(Q)=0.00210 \ 20 \ 20 \ 20 \ 20 \ 20 \ 20 \ 20$	
247.3 2	35.0 10	2175.9	25/2+	1928.6	23/2-	E1		0.0533	Mult.: from $\alpha(\exp)=1.55$ 15. Also $A_2=-0.58$ 4. $\alpha(K)=0.0429$ 6; $\alpha(L)=0.00793$ 12; $\alpha(M)=0.00189$ 3 $\alpha(N)=0.000490$ 7; $\alpha(O)=0.0001069$ 16; $\alpha(P)=1.619\times10^{-5}$ 23; $\alpha(Q)=7.29\times10^{-7}$ 11 Mult.: $\alpha(\exp)\leq 0.14$, combined analysis for 201.9 γ and 247.3 γ , with the main contribution being from the latter. $A_2=-0.24$ 4.	

From ENSDF

²⁰⁹₈₇Fr₁₂₂-3

I

 $^{209}_{87}\mathrm{Fr}_{122}$ -3

						¹⁹⁷ Au(¹⁶	O,4n γ) 2009	Dr04 (contin	nued)
γ ⁽²⁰⁹ Fr) (continued)									
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@a}$	α &	Comments
248.8 3	4.2 8	2424.7	29/2+	2175.9	25/2+	E2		0.261	$\alpha(K)=0.1040 \ 15; \ \alpha(L)=0.1160 \ 18; \ \alpha(M)=0.0309 \ 5$ $\alpha(N)=0.00811 \ 12; \ \alpha(O)=0.00170 \ 3; \ \alpha(P)=0.000229 \ 4;$ $\alpha(Q)=2.61\times10^{-6} \ 4$
284.7 <i>3</i>	2.6 2	4324.3	41/2+	4039.6	39/2+	M1+E2		0.752	Mult.: $A_2 = +0.18$ <i>11</i> . $\alpha(K) = 0.607$ <i>9</i> ; $\alpha(L) = 0.1101$ <i>16</i> ; $\alpha(M) = 0.0262$ <i>4</i> $\alpha(N) = 0.00687$ <i>10</i> ; $\alpha(O) = 0.001535$ <i>22</i> ; $\alpha(P) = 0.000246$ <i>4</i> ; $\alpha(Q) = 1.374 \times 10^{-5}$ <i>20</i> Mult : $A_2 = -0.32$ <i>13</i>
309.8 <i>3</i>		2717.4	(29/2)	2407.6	27/2+				Mult. $A_2 = -0.52$ 15.
331.2 [‡] 3	4.1 3	3234.5	31/2 ⁽⁺⁾	2903.3?	29/2+	(M1+E2)		0.496	α (K)=0.401 6; α (L)=0.0725 11; α (M)=0.01725 25 α (N)=0.00452 7; α (O)=0.001011 15; α (P)=0.0001622 23; α (Q)=9.05×10 ⁻⁶ 13 Mult.: A ₂ =-0.40 13.
335.5 ^b 3	1.0 2	4659.8	45/2-	4324.3	41/2+	(M2)		1.602	α (K)=1.188 <i>17</i> ; α (L)=0.311 <i>5</i> ; α (M)=0.0779 <i>12</i> α (N)=0.0206 <i>3</i> ; α (O)=0.00458 <i>7</i> ; α (P)=0.000722 <i>11</i> ; α (Q)=3.77×10 ⁻⁵ <i>6</i> Mult : A ₂ =+0 1 3
342.2 3	1.5 2	3369.6	33/2+	3027.4	31/2+	M1+E2		0.454	$\begin{aligned} \alpha(\mathbf{K}) = 0.367 \ 6; \ \alpha(\mathbf{L}) = 0.0663 \ 10; \ \alpha(\mathbf{M}) = 0.01576 \ 23 \\ \alpha(\mathbf{N}) = 0.00413 \ 6; \ \alpha(\mathbf{O}) = 0.000924 \ 14; \ \alpha(\mathbf{P}) = 0.0001482 \ 21; \\ \alpha(\mathbf{Q}) = 8.28 \times 10^{-6} \ 12 \\ \text{Mult.: } \mathbf{A}_2 = -0.45 \ 20. \end{aligned}$
386.4 ^b 3	0.3 1	5046.2?		4659.8	45/2-				
408.7 2	13.1 6	4039.6	39/2+	3630.9	37/2+	M1+E2	1.11 +17-15	0.159 16	$\alpha(K)=0.122 \ 14; \ \alpha(L)=0.0282 \ 17; \ \alpha(M)=0.0069 \ 4 \\ \alpha(N)=0.00182 \ 10; \ \alpha(O)=0.000399 \ 23; \ \alpha(P)=6.1\times10^{-5} \ 4; \\ \alpha(Q)=2.8\times10^{-6} \ 3 \\ \alpha(Q)=0.00182 \ 10^{-6} \ 3 \\ \alpha(Q)=0.00182 \ 10^{-6} \ 10^$
414.9 <i>3</i>	0.9 2	5903.4	49/2-	5488.5	47/2-	M1+E2		0.269	Mult., δ : from α (K)exp=0.145 <i>14</i> , α (L)exp=0.012 <i>4</i> . Also α (exp)=0.25 <i>13</i> , A ₂ =-0.46 <i>7</i> . α (K)=0.218 <i>3</i> ; α (L)=0.0392 <i>6</i> ; α (M)=0.00931 <i>14</i> α (N)=0.00244 <i>4</i> ; α (O)=0.000545 <i>8</i> ; α (P)=8.75×10 ⁻⁵ <i>13</i> ;
433.2 2	93.7 14	1763.7	21/2-	1330.46	17/2-	E2		0.0524	$\alpha(Q)=4.89\times10^{-6}$ 7 Mult.: A ₂ =-0.50 <i>16</i> . $\alpha(K)=0.0325$ 5; $\alpha(L)=0.01481$ 21; $\alpha(M)=0.00382$ 6
									α (N)=0.001003 <i>15</i> ; α (O)=0.000214 <i>3</i> ; α (P)=3.04×10 ⁻⁵ <i>5</i> ; α (Q)=7.51×10 ⁻⁷ <i>11</i> Mult.: α (K)exp=0.032 <i>2</i> , α (M)exp=0.003 <i>1</i> , A ₂ =+0.26 <i>5</i> .
435.7 <i>3</i> 466.3 2	18.2 5	3153.1 1088.88	31/2 15/2 ⁻	2717.4 622.64	(29/2) 11/2 ⁻	E2		0.0436	$\alpha(K)=0.0280 \ 4; \ \alpha(L)=0.01162 \ 17; \ \alpha(M)=0.00298 \ 5$ $\alpha(N)=0.000783 \ 11; \ \alpha(O)=0.0001677 \ 24; \ \alpha(P)=2.40\times10^{-5} \ 4; \ \alpha(Q)=6.42\times10^{-7} \ 9$
481.4 3	4.6 4	2245.1	23/2 ⁽⁺⁾	1763.7	21/2-	(E1)		0.01231	Mult.: $\alpha(K)\exp=0.031$ 3, $A_2=+0.21$ 5. $\alpha(K)=0.01006$ 15; $\alpha(L)=0.001716$ 25; $\alpha(M)=0.000405$ 6

4

From ENSDF

L

						¹⁹⁷ Au(¹⁶	Ο,4n γ)	2009Dr04	(continued)
							γ (²⁰⁹ F	r) (continued)	2
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@a}$	α &	Comments
482.7 <i>3</i>	6.7 4	1088.88	15/2-	606.06	13/2-	M1(+E2)	<1.8	0.13 6	$\begin{aligned} &\alpha(N) = 0.0001055 \ 15; \ \alpha(O) = 2.33 \times 10^{-5} \ 4; \ \alpha(P) = 3.62 \times 10^{-6} \ 5; \\ &\alpha(Q) = 1.82 \times 10^{-7} \ 3 \\ &\text{Mult.: } A_2 = -0.34 \ 17. \\ &\alpha(K) = 0.10 \ 5; \ \alpha(L) = 0.020 \ 6; \ \alpha(M) = 0.0048 \ 14 \\ &\alpha(N) = 0.0013 \ 4; \ \alpha(O) = 0.00028 \ 9; \ \alpha(P) = 4.4 \times 10^{-5} \ 14; \\ &\alpha(Q) = 2.2 \times 10^{-6} \ 11 \end{aligned}$
514.0 <i>3</i>	4.8 9	3923.4	35/2 ⁽⁺⁾	3409.4	33/2 ⁽⁺⁾	(M1+E2)		0.1515	Mult., δ : from α (K)exp>0.054. Also A ₂ =-0.48 <i>17</i> . α (K)=0.1226 <i>18</i> ; α (L)=0.0219 <i>3</i> ; α (M)=0.00521 <i>8</i> α (N)=0.001366 <i>20</i> ; α (O)=0.000305 <i>5</i> ; α (P)=4.90×10 ⁻⁵ <i>7</i> ; α (Q)=2.74×10 ⁻⁶ <i>4</i>
515.5 2	23.1 9	3630.9	37/2+	3115.4	33/2+	E2		0.0343	Mult.: A ₂ =-0.53 24. α (K)=0.0230 4; α (L)=0.00846 12; α (M)=0.00216 3 α (N)=0.000565 8; α (O)=0.0001216 17; α (P)=1.761×10 ⁻⁵ 25; α (Q)=5.21×10 ⁻⁷ 8
528.3 <i>3</i>	6.1 5	3127.4	31/2-	2599.1	27/2-	E2		0.0324	Mult.: A ₂ =+0.38 <i>10</i> . α (K)=0.0219 <i>3</i> ; α (L)=0.00785 <i>11</i> ; α (M)=0.00200 <i>3</i> α (N)=0.000523 <i>8</i> ; α (O)=0.0001126 <i>16</i> ; α (P)=1.636×10 ⁻⁵ <i>23</i> ; α (Q)=4.95×10 ⁻⁷ <i>7</i>
534.8 <i>3</i>	0.6 1	5194.6	47/2 ⁽⁻⁾	4659.8	45/2-	(M1+E2)		0.1363 20	Mult.: $A_2 = +0.44$ <i>16</i> . $\alpha(K) = 0.1104$ <i>16</i> ; $\alpha(L) = 0.0197$ <i>3</i> ; $\alpha(M) = 0.00469$ <i>7</i> $\alpha(N) = 0.001228$ <i>18</i> ; $\alpha(O) = 0.000274$ <i>4</i> ; $\alpha(P) = 4.41 \times 10^{-5}$ <i>7</i> ; $\alpha(Q) = 2.47 \times 10^{-6}$ <i>4</i>
538.7 2	25.0 10	1763.7	21/2-	1224.97	17/2-	E2		0.0310	Mult.: $A_2 = -0.45$ <i>11.</i> $\alpha(K) = 0.0211$ <i>3</i> ; $\alpha(L) = 0.00739$ <i>11</i> ; $\alpha(M) = 0.00188$ <i>3</i> $\alpha(N) = 0.000492$ <i>7</i> ; $\alpha(O) = 0.0001060$ <i>15</i> ; $\alpha(P) = 1.544 \times 10^{-5}$ <i>22</i> ; $\alpha(Q) = 4.75 \times 10^{-7}$ <i>7</i>
559.3 <i>3</i> 566.2 <i>3</i>	6.0 8 4.5 5	3968.7 2696.7	35/2 27/2 ⁺	3409.4 2130.5	33/2 ⁽⁺⁾ 25/2 ⁺	D+Q M1+E2		0.1171	Mult.: α (K)exp=0.019 3, A ₂ =+0.20 9. Mult.: A ₂ =-0.19 4. α (K)=0.0948 14; α (L)=0.01693 24; α (M)=0.00402 6 α (N)=0.001053 15; α (O)=0.000236 4; α (P)=3.78×10 ⁻⁵ 6; α (Q)=2.12×10 ⁻⁶ 3
602.7 <i>3</i>	8.5 4	3027.4	31/2+	2424.7	29/2+	M1+E2		0.0992	Mult.: $A_2 = -0.65 \ 14$. $\alpha(K) = 0.0804 \ 12$; $\alpha(L) = 0.01432 \ 21$; $\alpha(M) = 0.00340 \ 5$ $\alpha(N) = 0.000891 \ 13$; $\alpha(O) = 0.000199 \ 3$; $\alpha(P) = 3.20 \times 10^{-5} \ 5$; $\alpha(Q) = 1.79 \times 10^{-6} \ 3$
606.0 2	100.0 16	606.06	13/2-	0.0	9/2-	E2		0.0238	Mult.: $A_2=-0.57 \ 8.$ $\alpha(K)=0.01680 \ 24; \ \alpha(L)=0.00522 \ 8; \ \alpha(M)=0.001315 \ 19$ $\alpha(N)=0.000345 \ 5; \ \alpha(O)=7.46\times10^{-5} \ 11; \ \alpha(P)=1.099\times10^{-5} \ 16;$ $\alpha(Q)=3.74\times10^{-7} \ 6$
618.9 2	15.9 20	1224.97	17/2-	606.06	13/2-	E2		0.0227	Mult.: α (K)exp=0.016 2, α (L)exp=0.007 1, A ₂ =+0.27 3. α (K)=0.01614 23; α (L)=0.00492 7; α (M)=0.001236 18 α (N)=0.000324 5; α (O)=7.02×10 ⁻⁵ 10; α (P)=1.037×10 ⁻⁵ 15;

S

L

						¹⁹⁷ Au(¹⁶	Ο,4n γ)	2009Dr04 (c	continued)
							γ (²⁰⁹ Fr)	(continued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	δ ^{@a}	α &	Comments
620.2 <i>3</i>	7.5 5	4659.8	45/2-	4039.6	39/2+	E3		0.0686	$\alpha(Q)=3.59\times10^{-7} 5$ Mult.: $\alpha(K)\exp=0.017 3$, $A_2=+0.23 9$. $\alpha(K)=0.0386 6$; $\alpha(L)=0.0223 4$; $\alpha(M)=0.00586 9$ $\alpha(N)=0.001544 22$; $\alpha(O)=0.000331 5$; $\alpha(P)=4.75\times10^{-5} 7$; $\alpha(Q)=1.178\times10^{-6} 17$
622.7 2	22.8 8	622.64	11/2-	0.0	9/2-	M1+E2	0.64 11	0.071 5	Mult.: $\alpha(K) \exp=0.042 \ 8$, K/L=1.6 3, A ₂ =+0.07 12. E _y : 620.0y in Table II of 2009Dr04. $\alpha(K)=0.057 \ 5$; $\alpha(L)=0.0107 \ 7$; $\alpha(M)=0.00256 \ 14$ $\alpha(N)=0.00067 \ 4$; $\alpha(O)=0.000150 \ 9$; $\alpha(P)=2.38\times10^{-5} \ 14$; $\alpha(Q)=1.27\times10^{-6} \ 10$
630.5 <i>3</i>	3.3 3	2559.1	25/2 ⁽⁻⁾	1928.6	23/2-	(M1+E2)		0.0881	Mult., δ : from α (K)exp=0.057 4. Also A ₂ =-0.43 10. α (K)=0.0714 10; α (L)=0.01270 18; α (M)=0.00301 5 α (N)=0.000790 12; α (O)=0.0001766 25; α (P)=2.84×10 ⁻⁵ 4; α (Q)=1.589×10 ⁻⁶ 23
642.3 <i>3</i> 670.5 <i>3</i>	0.5 <i>1</i> 5.2 <i>4</i>	5302.1 2599.1	(47/2) 27/2 ⁻	4659.8 1928.6	45/2 ⁻ 23/2 ⁻	D+Q E2		0.0191	Mult.: $A_2=-0.60$ 12. Mult.: $A_2=-0.23$ 19. $\alpha(K)=0.01386$ 20; $\alpha(L)=0.00393$ 6; $\alpha(M)=0.000983$ 14 $\alpha(N)=0.000258$ 4; $\alpha(O)=5.59\times10^{-5}$ 8; $\alpha(P)=8.33\times10^{-6}$ 12; $\alpha(O)=3.06\times10^{-7}$ 5
690.7 2	27.5 11	3115.4	33/2+	2424.7	29/2+	E2		0.0179	Mult.: $A_2 = +0.33 \ 9.$ $\alpha(K) = 0.01311 \ 19; \ \alpha(L) = 0.00363 \ 5; \ \alpha(M) = 0.000904 \ 13$ $\alpha(N) = 0.000237 \ 4; \ \alpha(O) = 5.15 \times 10^{-5} \ 8; \ \alpha(P) = 7.70 \times 10^{-6} \ 11;$ $\alpha(Q) = 2.88 \times 10^{-7} \ 4$
692.7 <i>3</i> 724.4 2	1.3 2 98.9 <i>17</i>	2937.8 1330.46	(27/2) 17/2 ⁻	2245.1 606.06	23/2 ⁽⁺⁾ 13/2 ⁻	E2		0.01624	Mult.: $A_2 = +0.25$ 5. $\alpha(K) = 0.01200 \ 17; \ \alpha(L) = 0.00319 \ 5; \ \alpha(M) = 0.000794 \ 12$ $\alpha(N) = 0.000208 \ 3; \ \alpha(O) = 4.53 \times 10^{-5} \ 7; \ \alpha(P) = 6.79 \times 10^{-6} \ 10;$ $\alpha(O) = 2.63 \times 10^{-7} \ 4$
727.4 [‡] 3	6.0 10	2903.3?	29/2+	2175.9	25/2+	E2		0.01610	Mult.: $\alpha(K) \exp=0.012 2$, $\alpha(L) \exp=0.0022 4$, $A_2 = +0.23 4$. $\alpha(K) = 0.01190 17$; $\alpha(L) = 0.00316 5$; $\alpha(M) = 0.000785 11$ $\alpha(N) = 0.000206 3$; $\alpha(O) = 4.48 \times 10^{-5} 7$; $\alpha(P) = 6.72 \times 10^{-6} 10$; $\alpha(Q) = 2.60 \times 10^{-7} 4$
728.4 <i>3</i> 733.2 <i>3</i>	3.0 <i>10</i> 2.1 <i>3</i>	3153.1 4364.1	31/2 39/2 ⁺	2424.7 3630.9	29/2 ⁺ 37/2 ⁺	M1+E2		0.0592	Mult.: A ₂ =+0.26 9. $\alpha(K)=0.0480$ 7; $\alpha(L)=0.00850$ 12; $\alpha(M)=0.00202$ 3 $\alpha(N)=0.000529$ 8; $\alpha(O)=0.0001182$ 17; $\alpha(P)=1.90\times10^{-5}$ 3; $\alpha(Q)=1.065\times10^{-6}$ 15
739.7 3	1.7 2	5399.5	49/2-	4659.8	45/2-	E2		0.01556	Mult.: $A_2=-0.63 \ 17.$ $\alpha(K)=0.01154 \ 17; \ \alpha(L)=0.00302 \ 5; \ \alpha(M)=0.000750 \ 11$ $\alpha(N)=0.000196 \ 3; \ \alpha(O)=4.28\times10^{-5} \ 6; \ \alpha(P)=6.44\times10^{-6} \ 9;$ $\alpha(Q)=2.52\times10^{-7} \ 4$ Mult.: $A_2=+0.39 \ 8.$

6

 $^{209}_{87}\mathrm{Fr}_{122}$ -6

L

¹⁹⁷Au(¹⁶**O**,4n γ) 2009Dr04 (continued)

$\gamma(^{209}\text{Fr})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α &	Comments
745.0 <i>3</i> 745.5 <i>3</i>	1.5 <i>3</i> 2.2 <i>2</i>	5069.3 3153.1	(43/2) 31/2	$\begin{array}{r} \hline 4324.3 \\ 2407.6 \\ 27/2^+ \end{array}$	0		Mult.: $A_2 = +0.22$ 11.
754.1 ^b 3	0.2 1	5413.9?	, (37/2)	$4659.8 \ 45/2^{-}$ $3400 \ 4 \ 33/2^{(+)}$			-
787.4 3	6.0 <i>3</i>	2917.9	(37/2) 29/2 ⁽⁺⁾	2130.5 25/2+	(E2)	0.01369	α (K)=0.01028 <i>15</i> ; α (L)=0.00257 <i>4</i> ; α (M)=0.000635 <i>9</i> α (N)=0.0001664 <i>24</i> ; α (O)=3.63×10 ⁻⁵ <i>6</i> ; α (P)=5.50×10 ⁻⁶ <i>8</i> ; α (Q)=2.23×10 ⁻⁷ <i>4</i> Mult.: A ₂ =+0.30 <i>11</i> .
792.7 3	3.4 3	4423.6	41/2 ⁽⁺⁾	3630.9 37/2+	(E2)	0.01351	α (K)=0.01015 <i>15</i> ; α (L)=0.00253 <i>4</i> ; α (M)=0.000624 <i>9</i> α (N)=0.0001635 <i>23</i> ; α (O)=3.57×10 ⁻⁵ <i>5</i> ; α (P)=5.40×10 ⁻⁶ <i>8</i> ; α (Q)=2.20×10 ⁻⁷ <i>3</i> Mult.: A ₂ =+0.33 <i>14</i> .
809.8 <i>3</i>	9.3 8	3234.5	31/2 ⁽⁺⁾	2424.7 29/2+	(M1+E2)	0.0456	α (K)=0.0370 6; α (L)=0.00654 10; α (M)=0.001550 22 α (N)=0.000406 6; α (O)=9.08×10 ⁻⁵ 13; α (P)=1.459×10 ⁻⁵ 21; α (Q)=8.20×10 ⁻⁷ 12 Mult.: A ₂ =-0.10 8.
820.5 ^b 3	0.2 1	5480.3?		4659.8 45/2-			
828.7 3	1.7 2	5488.5	47/2-	4659.8 45/2-	M1+E2	0.0429	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0348 \ 5; \ \alpha(\mathrm{L}) = 0.00615 \ 9; \ \alpha(\mathrm{M}) = 0.001459 \ 21 \\ \alpha(\mathrm{N}) = 0.000382 \ 6; \ \alpha(\mathrm{O}) = 8.55 \times 10^{-5} \ 12; \ \alpha(\mathrm{P}) = 1.373 \times 10^{-5} \ 20; \ \alpha(\mathrm{Q}) = 7.71 \times 10^{-7} \\ 11 \end{array} $
997.4 <i>3</i>	0.5 1	5657.2	47/2 ⁽⁻⁾	4659.8 45/2-	(M1+E2)	0.0265	Mult.: A ₂ =-0.66 <i>6</i> . α (K)=0.0215 <i>3</i> ; α (L)=0.00377 <i>6</i> ; α (M)=0.000895 <i>13</i> α (N)=0.000234 <i>4</i> ; α (O)=5.24×10 ⁻⁵ <i>8</i> ; α (P)=8.43×10 ⁻⁶ <i>12</i> ; α (Q)=4.74×10 ⁻⁷ <i>7</i> Mult.: A ₂ =-0.56 <i>13</i> .
1105.4 3	0.4 1	5765.2	(47/2)	4659.8 45/2-	(D+Q)		Mult.: $A_2 = -0.32$ 13.

[†] From 2009Dr04. The authors state that the $\Delta E\gamma$ range from 0.15 keV for strong lines and 0.25 keV for weak lines. The evaluators make the division between strong and weak at $I\gamma=10$.

[‡] The ordering of the 331γ -727 γ cascade is not firmly established.

[#] From 2009Dr04, based on ce data, γ -ray anisotropies and deduced transition strengths.

[@] Deduced by evaluators from the ce data.

[&] Additional information 1.

 \neg

^a Additional information 2.
 ^b Placement of transition in the level scheme is uncertain.

 $^{209}_{87}\mathrm{Fr}_{122}$

 $^{209}_{87}\mathrm{Fr}_{122}$