	History									
	Туре	Author	Citation	Literature Cutoff Date						
	Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013						
$Q(\beta^{-}) = -1892.6 \ I6$; $S(n) = 7459.8 \ I9$; $S(p) = 3799.0 \ 8$; $Q(\alpha) = 3137.3 \ 8 \ 2012Wa38$ Additional information 1.										
		²⁰⁹ Bi	Levels							

Each of the six single-particle proton states predicted, on the basis of the shell-model, for $82 < N \le 126$, has been observed in single-particle proton stripping reactions on ²⁰⁸Pb. Except for the $1i_{13/2}$ and $3p_{1/2}$ members, these states appear to contain most of the single-particle strength. The missing $3p_{1/2}$ strength may be concentrated in one of the components of a doublet at 4421+4447 (1970E113; see also 1968Ba34 and 1968E101). The $1i_{13/2}$ state at 1608, the only single-particle in the $82 < N \le 126$ shell with positive parity, is expected to have its strength fragmented because of coupling with the positive-parity, particle-vibration states. This state is excited in inelastic scattering with $\sigma \approx 20\%$ that of the $13/2^+$ member of the assumed configuration= $\pi(1h_{9/2})^{+1} \otimes 3^-$ multiplet (1971Un01). Also, the $13/2^+$ member of the multiplet is excited in single-particle transfer (on ²⁰⁸Pb) with strength $\approx 10\%$ that of the $13/2^+$ single-particle level (1967Li09,1968E101).

See 1974Sc20 for a discussion of core-polarization effects in the structure of the single-proton states as deduced from (p,p') inelastic scattering. These authors deduce 8% for the admixture of the configuration= $\pi(1h_{9/2})^{+1} \otimes 3^{-1}$ in the $1i_{13/2}$ state

The group of seven states with E(level)=2492-2741 appear to be well described as a multiplet formed by coupling a $1h_{9/2}$ single-particle proton state (²⁰⁹Bi g.s.) with the 3⁻ collective excitation at 2614 in ²⁰⁸Pb. The strongest evidence for this configuration assignment is the excellent agreement between the B(E3) and $(\beta_3)^2$ values for the combined seven states (0.54 7 from Coulomb excitation and 0.11 from (p,p')) and those for the 3⁻ state in ²⁰⁸Pb (0.58 4 and 0.110) as well as the agreement between the energy of the septuplet centroid (2620 with spins as adopted) and that for the 3⁻ state (2614). The spins of the individual levels in the septuplet have been assigned partly from (p,p') σ data on the basis of the (2J+1)-rule (1966Ha35), and partly from $\gamma(\theta)$ data in (t,2n γ). The doublet at 2600 was unresolved in (p,p') and assigned as 11/2+13/2. The doublet was subsequently resolved and the J-assignments of 1966Ha35 confirmed by the Coulomb-excitation data of 1969He07 and 1970Br12 and the (t,2n γ) data of 1983Ma15. See these authors, especially 1970Br12 and 1983Ma15, for a detailed discussion of the spin assignments for the septuplet. From (p,p') data, 1974Cl07 show that the 3/2⁺ state at 2492 contains only 64% 7 of the expected strength for the 3/2-member of the multiplet. They suggest that the 2957 level contains an additional 17% 6 of the configuration= $\pi(1h_{9/2})^{+1} \otimes 3^{-}$ strength. See also "particle-vibration coupled states (²¹⁰Po 0⁺,4⁺)" below

The coupling of the $1h_{9/2}$ ²⁰⁹Bi g.s. to the core states in ²⁰⁸Pb at 3198 ($J^{\pi}=5^{-}$) and 3475 ($J^{\pi}=4^{-}$) would result in a decuplet and a nonet of states, respectively. As pointed out by 1974Cl06, these core states are dominated by configuration= $v(2g_{9/2}^{1}3p_{1/2}^{-1})^{2}$ so that the nineteen states of the decuplet and nonet should be dominated by the configuration= $\pi(1h_{9/2})^{+1} \otimes v(2g_{9/2}^{1}3p_{1/2}^{-1})^{2}$. 1974Cl06 suggest that an alternate representation of these 19 states is in terms of the coupling of a $3p_{1/2}$ neutron hole to the 10

rg/4Clob suggest that an alternate representation of these 19 states is in terms of the coupling of a 5p/2 neutron noise to the 10 states with J=0⁻ to 9⁻ in ²¹⁰Bi identified as members of the configuration= $\pi(1h_{9/2})\otimes\nu(2g_{9/2})$) multiplet. (see also 1980Clo5 who, on the basis of the (d,t) reaction on a 9^{- 210}Bi target, suggest that the levels seen in that reaction have a dominant configuration=9⁻ $\otimes\nu(nlj)^{-1}$ structure). Insofar as this alternate representation is correct, the 19 states should be populated in ²⁰⁹Bi(p,p') at proton energies corresponding to excitation of isobaric analogs in ²¹⁰Po. Of the 10 ²¹⁰Bi core states mentioned above, a group of 8 states with energies in the range 2766-3170 in (p,p') (two states assumed doublets) has been interpreted as the decuplet with configuration= $\pi(1h_{9/2})^{+1}\otimes^{5^-}$ (1974Cl06,1974Cl07). These states account for 88% 6 of the ²⁰⁸Pb L=5 strength (1974Cl07). The centroid of the decuplet is at 3090 (with spins as adopted). 1974Cl07 observe that the 2987 19/2⁺ level contains only 59% 7 of the strength expected for the configuration= $\pi(1h_{9/2})^{+1}\otimes^{5^-}$ 19/2⁺ member of the decuplet, which implies strong fragmentation of this configuration. They suggest that the 3957 level contains most of the missing strength. The spin assignments for the assumed members of the decuplet (except for the 19/2⁺ level) from 1974Cl06 and 1974Cl07 are based on the strength in ²⁰⁹Bi(p,p') via direct scattering and in ²⁰⁹Bi(p,p') via analog resonances. The spin of 19/2⁺ for the 2987 level suggested by these authors is confirmed by the γ -branching observed by 1978Be17 in ²⁰⁸Pb(⁷Li, α 2n γ) but is in disagreement with that based solely on the (2J+1)-rule in (p,p') (see 1975Wa03). For other differences between assignments based on the (2J+1)-rule and those of 1974Cl06 and 1974Cl07, see 1975Wa03. Confirming arguments for J are based on $\gamma(\theta)$ in (t,2n γ). A group of 9 states with

E(level)

Adopted Levels, Gammas (continued)

²⁰⁹Bi Levels (continued)

energies in the range 2919 to 3503 have been interpreted by 1974Cl06 as the above mentioned multiplet with configuration= $\pi(1h_{9/2})^{+1}\otimes 4^-$. The spin assignments for the assumed members of this multiplet from 1974Cl06 are based on the strength of resonances in ²⁰⁹Bi(p,p') excitation functions at energies corresponding to isobaric analogs of states with known spin in ²¹⁰Bi along with the assumption that the 19 states of the decuplet and nonet exhaust all the spins possible from the two-particle, one-hole configurations involving the $1h_{9/2}$ proton and $1g_{9/2}$ neutron single-particle and $3p_{1/2}$ neutron single-hole states. See 1974Cl06 for detailed assignments. Confirming arguments for J are based on $\gamma(\theta)$ in (t,2n γ). See 1983Ma15 for a calculation of the energies and wave functions for all nineteen states. The calculation is based on the configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(1g_{9/2}^{1}3p_{1/2}^{-1})^2$. representation.

On the basis of a comparison of experimental energies and spectroscopic factors with values predicted by a core-coupling calculation, 1972Ba81 in (t,α) propose configurations of the type configuration= $(0^+ \otimes \pi(nlj)^{-1}) + (3^- \otimes \pi(nlj))$ for several of the states seen in (t,α) , as indicated below. The authors also propose configuration= $(0^+ \otimes \pi(nlj)^{-1}) + (4^+ \otimes \pi(nlj)^{-1})$ for states at 4000 15 and 4120 15. It is not clear whether these correspond to states seen at these energies in other reactions, or whether they are separate states

For a discussion of particle-vibration coupling involving ²⁰⁸Pb core states other than those discussed above, see 1974Cl06, 1974Cl07, 1975Wa03, and 1983Ma15.

Cross Reference (XREF) Flags

	A B C D F G H I J K L	²⁰⁹ Pb β^- decay ²⁰⁹ Po ε decay ²¹³ At α decay ²⁰⁷ Pb(α,d) ²⁰⁸ Pb(p,γ) ²⁰⁸ Pb(p,γ): giant resonance ²⁰⁸ Pb(p,γ): IAR ²⁰⁸ Pb(p,γ); IAR ²⁰⁸ Pb(p,γ),(pol p,p'): IAR ²⁰⁸ Pb(d,n) ²⁰⁸ Pb(d,n) ²⁰⁸ Pb(d,nγ) ²⁰⁸ Pb(t,2nγ) ²⁰⁸ Pb(t,2nγ) ²⁰⁸ Pb(³ He,d) Single-par 	M N O P Q R S T U V W X S T U V V W X	208 Pb(3 He,dy) 208 Pb($^{\alpha}$,t) 208 Pb(7 Li, $^{\alpha}$ 2ny) 208 Pb(7 Li, 6 He), 208 Pb(11 B, 10 Be) 208 Pb(12 C, 11 B) 208 Pb(12 C, 11 B) 209 Bi(γ , γ) 209 Bi(γ , γ) 209 Bi(γ , γ), (e, ρ): 209 Bi(φ , φ'): gian e states) (pol ⁷ Li, ⁶ He)) : IAR nt resonance Pb 3 ⁻)	Y Z Other AA AD AE AF AG AH AI	²⁰⁹ Bi(e,n): giant resonance ²⁰⁹ Bi(n,n' γ) S: ²⁰⁹ Bi(p,p') ²⁰⁹ Bi(p,p'): giant resonance ²⁰⁹ Bi(d,d') ²⁰⁹ Bi(α,α'): giant resonance ²¹⁰ Bi(d,t): target=9 ⁻ isomer ²¹⁰ Po(t, α) Coulomb excitation Inelastic scattering Muonic atom
		Particle-vibration o	coupl	ed states (²⁰⁸ 1	Pb 4 ⁻ , 5 ⁻)	
		Particle-vibration o	coupl	ed states (²¹⁰ 1	Po 0 ⁺ ,4 ⁺)		
ŀ	J^{π}	T _{1/2}	XRE	F			Comments
	9/2-	2.01×10 ¹⁹ y 8 ABCDEF I	KLMN	OPQRSTU X Z	XREF: Others $\%\alpha$ =100 μ =+4.1103 5 Q=-0.55 1 (1	: AA, A (1953T 983De(B, AC, AD, AE, AF, AG, AH, AI (01) (7)

J^{π}: atomic beam (1976Fu06), L(α ,t)=L(³He,d)=5 from 0⁺.

E(level) [†]	J^{π}	T _{1/2}		XREF		Comments
						 T_{1/2}: from α-decay in 2012Be06. 1.9E19 y 2 from 2003De11 deduced only from the partial width for the ground state decay. octupole moment=+0.5 (1976Fu06). μ: from 1996Ba94 re-evaluation with correction for diamagnetism of +4.1106 2 by NMR in 1953Ti01. Q: from atomic beam method in 1983De07. Others: -0.37 3 (muonic x-ray hyperfine structure, 1972Le07), -0.40 5 (1974Ho40), -0.39 3 (optical spectroscopy, 1967Di04, 1970Ge10), -0.50 8 (pionic x-ray hyperfine structure, 1978Be24), -0.5 2 (pionic x-ray hyperfine structure, 1978Be24), -0.5 2 (pionic x-ray hyperfine structure). configuration=π(1h_{9/2})⁺¹. π⁰ emission not found (1989St01). Isotope shift(²⁰⁷Bi-²⁰⁹Bi)=0.0999 cm⁻¹ 20 (1985Ba21). Charge density distribution measured (1973Si20,1978Eu01).
896.28 5	7/2-	8.2 ps 12	B DE	IJKLMNOPQRSTU	Z	XREF: Others: AA, AC, AF, AG, AH $W_{1} \downarrow Q^{2}H_{2} \downarrow Q_{2} \downarrow Q_{2}$
						J [*] : L(² He,d)=L(α ,t)=3, 896.287 M1+E2 to 9/2 . T _{1/2} : from B(E2)↑=0.00261 <i>16</i> and the adopted mixing ratio of δ (896.28γ)=-0.62 <i>6</i> . B(E2)↑=0.00261 <i>16</i> , weighted average of 0.0018 <i>6</i> (1969He07), 0.0024 2 (1972Ha59), and 0.00275 <i>14</i> (1973Kr02). Other: B(E2)↑=0.00139 + <i>16</i> -23 (1970Br12), but the bombarding energy was such that the assumption of a pure Coulomb excitation may not be valid (1973Kr02).
1608.57 5	13/2+	0.23 ns <i>13</i>	DE	I KLMNOPQRST	Ζ	Configuration= <i>π</i> (21//2) ⁻¹ XREF: Others: AA, AC, AF, AG, AH, AI Q=-0.37 3 (1972Le07) J ^π : L(α ,t)=L(³ He,d)=6, 1608.53γ M2+E3 to 9/2 ⁻ . T _{1/2} : from B(E3)↑=0.026 3 and the adopted mixing ratio of δ(1608.53γ)=+0.33 10. B(E3)↑=0.026 3, weighted average of B(E3)↑=0.022 8 from Coulomb excitation (1969He07) and B(E3)↑=0.027 3 from (p,p') (1974Sc20). Other B(E3)↑=0.0124 32 (1970Br12), but see also the comment to the 896-keV level. Q: from muonic x-ray hyperfine structure (1972Le07). configuration: probable a mixture of π(1i _{13/2}) ⁺¹ and π(1h _{9/2}) ⁺¹ ⊗3 ⁻ (1974Cl07). Isomer shift measured in muonic atom: 3.7 +6-8
2442.92 6	1/2+	11.3 ns 4		ЈК М О	Ζ	(1974Ba77), 3.5 6 (1972Le07), 3.8 3 (1984Ru08). XREF: Others: AA, AC, AD, AE, AF XREF: AF(2430). J ^{π} : L(t, α)=(0), 1546 γ E3 to 7/2 ⁻ . T _{1/2} : from 1546.7 γ (t) in (n,n γ) (1996De48). Other: 10 ns 2 from ce(K)(896 γ)(t)(1978El07) in (d,n γ). T _{1/2} >2 ps from 1546(t) in (⁷ Li, α 2n γ), but note that the authors place the 1546 γ from the 3154-keV doublet. configuration: probable a mixture of π (3s _{1/2}) ⁻¹ and π (2f _{7/2}) ⁺¹ \otimes 3 ⁻ (1972Ba81).
2492.86 6	3/2+ &	≈31 ps		K MNO	Z	XREF: Others: AA, AC, AE, AF, AG, AH, AI XREF: AF(2480)AH(2480). J^{π} : L(α ,t)=2, L(p,p')=3. RUL rules out mult(49.94 γ to $1/2^+$)=pure E2.

²⁰⁹Bi Levels (continued)

E(level) [†]	J^{π}	T _{1/2}		XREF		Comments
2564.14 10	(9/2) ⁺ &	0.015 ps <i>3</i>		K O	U	 T_{1/2}: from B(E3)↑=0.021 <i>3</i> in Coulomb excitation (1969He07) and the adopted branching for the 2492.86γ. B(E3)↑=0.021 <i>3</i>, from 0.053 <i>7</i> in Coulomb excitation (1969He07). configuration=π(1h_{9/2})⁺¹⊗3⁻+π(2d_{3/2})⁻¹ (1972Ba81). XREF: Others: AA, AC, AG, AI μ=3.5 <i>7</i>; Q=+0.11 <i>5</i> (1972Le07) J^π: L(p,p')=3, 2564γ E1+E3 to 9/2⁻. T_{1/2}: weighted average of 0.015 ps <i>3</i>, from Γ(γ₀)²/Γ=0.030 eV <i>5</i> in (γ,γ') (1969Me21) for J=9/2, and 0.014 ps <i>11</i>, from DSAM in (⁷Li,α2nγ) (1972Ha59). B(E3)↑=0.073 <i>11</i>, weighted average of B(E3)↑=0.074 <i>11</i> from Coulomb excitation (1969He07) and 0.072 <i>14</i> in muonic atom (1972Le07).
						μ,Q: from muonic x-ray hyperfine structure in 1972Le07. configuration= $π(1h_{9/2})^{+1}$ ⊗3 ⁻ (1974Cl07,1983Ma15). Isomer shift=6.2 5 (1974Ba77), 5.8 5 (1972Le07), 6.6 3 (1984Ru08) in Muonic atom dataset.
2583.02 8	(7/2)+&	0.31 ps <i>10</i>		КО	U	Z XREF: Others: AA, AC, AG B(E3)↑=0.052 8 (1969He07) J ^π : L(p,p')=L(e,e')=3, 1686.66γ E1(+M2) to 7/2 ⁻ , 2583.07γ E1+E3 to 9/2 ⁻ . T _{1/2} : from DSAM in (⁷ Li,α2nγ) (1972Ha59). Other: 0.15 ps +14-7 from DSAM in Coulomb excitation (1970Br12).
						configuration= $\pi(1h_{9/2})^{+1} \otimes 3^{-}$ (1974Cl07,1983Ma15). $\beta_3=0.122\ 6$ from inelastic scattering (1967Al14).
2599.91 9	11/2 ^{+ &}	36 fs 10	d	Kl n	U	Z XREF: Others: AA, AC, AG J^{π} : L(α ,t)=6 for 2600 doublet, 2599.9 γ E1+E3 to 9/2 ⁻ . T _{1/2} : from $\Gamma(\gamma_0)^2/\Gamma$ =0.0090 eV 24 in (γ,γ') (1969Me21) for J=11/2 and the adopted branching ratio of $\Gamma(\gamma_0)/\Gamma$ =0.847 18.
	. 0.					configuration= $\pi(1f_{9/2})^{+\otimes 3}$ (1983/Ma15). B(E3) \uparrow =0.094 14 in Coulomb excitation (1969He07).
2600.92 5	13/2+∝	0.44 ps <i>14</i>	d	K nO		2 XREF: Others: AA, AC, AG J^{π} : L(α ,t)=6 for 2600 doublet, 992.35 γ M1(+E2) to 13/2 ⁺ , 140.13 γ M1(+E2) from 15/2 ⁺ . T _{1/2} : from DSAM in (⁷ Li, α 2n γ) (1972Ha59). Other: 0.24 ps +14-10 in Coulomb excitation (1969He07). configuration= π (1h _{9/2}) ⁺¹ \otimes 3 ⁻ (1983Ma15). B(E3) \uparrow =0.108 15 from B(E3)=0.072 11 in Coulomb excitation (1969He07).
2617.34 6	5/2 ⁺ &	7.2 ps 11		КО	:	2 XREF: Others: AA, AC, AG J^{π} : L(p,p')=3, 124.48 γ M1(+E2) to 3/2 ⁺ , and 1721.08 γ E1(+M2) to 7/2 ⁻ . T _{1/2} : from adopted B(E3) \uparrow =0.034 5, by assuming a pure E3 transition for 2617.35 γ . Other: >2 ps from DSAM in (⁷ Li, α 2n γ) (1972Ha59). B(E3) \uparrow =0.034 5 from B(E3)=0.057 9 in Coulomb excitation (1969He07). configuration= π (he α) ⁺¹ \otimes 3 ⁻ (1074C107 1083Me15)
2741.05 5	15/2+	9.1 ps 12		K O		XREF: Others: AA, AC, AE, AF, AG, AH, AI

E(level) [†]	J^{π}	T _{1/2}		XREF		Comments
2766.66 6	3/2+ <i>a</i>			ΚM	Z	XREF: Others: AA, AC, AF J^{π} : L(p,p')=5, 323.74 γ M1 to 1/2 ⁺ . Note, that L(p,p')=4 in 1975Wa03. configuration= $\pi(1h_{9/2})^{+1} \otimes v(2g_{9/2}^{+1}3p_{1/2}^{-1})_{5^{-1}}$
2826.1 <i>4</i>	5/2-	6.9 fs 9	DE I	KL NOPQRS U	Z	XREF: Others: AA, AC, AF, AG, AH J ^π : L(³ He,d)=L(α ,t)=3, 2826.0γ E2 to 9/2 ⁻ . T _{1/2} : from Γ(γ_0) ² /Γ=0.034 eV 4 in (γ , γ') for J=5/2 and the adopted branching ratio of Γ(γ_0)/Γ=0.718 <i>I</i> 6 Other: <14 fs from DSAM in (⁷ Li, α 2n γ) and 7.8 fs 27 from B(E2)↑=0.029 10 in Coulomb excitation (1970Br12). B(E2)↑=0.029 <i>I</i> 0 in Coulomb excitation (1970Br12). configuration: probable a mixture of π (2f _{5/2}) ⁺¹ and
2845.20 6	1/2+			КM	Z	$π(1h_{9/2})^{-1} \otimes 2^{+} (19/4C107).$ XREF: Others: AA J^{π} : 402.27γ(θ) is isotropic. configuration= $π(1h_{9/2})^{+1} \otimes v(2g_{9/2}^{+1}3p_{1/2}^{-1})_{5^{-}}$ (1974C107, 1983Ma15)
2916.62 7	$(1/2)^+$		D	КM	Z	XREF: Others: AA J ^{π} : 149.98 γ M1+E2 to 3/2 ⁺ . configuration= π (1h _{9/2}) ⁺¹ \otimes ν (2g _{9/2} ⁺¹ 3p _{1/2} ⁻¹) ₄ - (1974C107 1983Ma15)
2955.93 7	(3/2)+			K M	Ζ	XREF: Others: AA, AC, AF J ^{π} : L(p,p')=3, 677.8 γ from 1/2 ⁻ . Spin was tentatively suggested by 1972Ba81, based on strength in (t, α) and possible L=2 with configuration= $\pi(2d_{3/2})^{-1}$. A $\pi(1h_{9/2})^{+1}\otimes^{3-}$ component is suggested by 1974Cl07 on the basis of (p,p') data, and by 1983Ma15 on the basis of (t,2n γ) data. Gammas to 1/2 ⁺ and 5/2 ⁺ are observed in (t,2n γ). The 2955 γ to 9/2 ⁻ is reported only in (n,n' γ). See comment on the 2955 γ .
2986.80 5	19/2 ^{+<i>a</i>}	17.9 ns 5	D	ΚΟ	Ζ	Comparation= <i>π</i> (2d _{3/2}) + <i>π</i> (1n _{9/2}) (5) (1772Bdo1). XREF: Others: AA, AC, AE, AH μ =3.50 8 (1978Be17) XREF: D(2979). J ^π : L(d,t)=1 from 9 ⁻ , L(p,p')=5 from 9/2 ⁻ , 245.73γ E2 to 15/2 ⁺ . T _{1/2} : weighted average of 17.9 ns 5 from γ(t) in (n,n'γ) (1996De48), and 18 ns <i>I</i> from γ(t) in (⁷ Li,α2nγ) (1972Ha59). μ : From g=0.368 8 in (⁷ Li,α2nγ) by time dependent perturbed angular distribution (1978Be17). configuration= π (1h _{9/2}) ⁺¹ \otimes ν(2g ⁺¹ _{9/2} 3p ⁻¹ _{1/2}) ₅ - (1974Cl07,1983Ma15).
3038.88 10	5/2+ <i>a</i>		D	K	Z	XREF: Others: AA, AC, AH
			(Continued on next	nage	(footnotes at end of table)

²⁰⁹Bi Levels (continued)

E(level) [†]	J^{π}	T _{1/2}		XREF		Comments
						J^{π} : L(p,p')=5, 2142.78 γ E1 to 7/2 ⁻ and 272.2 γ
						$(M1+E2)$ to $3/2^+$.
						configuration= $\pi(1h_{9/2})^{+} \otimes \nu(2g_{9/2}^{+}3p_{1/2}^{+})_{5^{-}}$ (1974Cl07 1983Ma15)
3090.16 8	$(7/2)^{+a}$			K	Z	XREF: Others: AA, AC
						J ^{π} : L(p,p')=5, 2194.1 γ to 7/2 ⁻ and 3089.48 γ
						$(E1+M2)$ to $9/2^{-}$.
						configuration= $\pi(1n_{9/2})^{-1} \otimes \nu(2g_{9/2}^{-3}sp_{1/2}^{-1})_{5^{-1}}$
3119.48 8	3/2-	0.021 ps 14	E I	KLMNOPQRS	Z	XREF: Others: AA, AB, AD
		Ĩ				XREF: N(3139).
						J^{π} : L(³ He,d)=1, 2223.23 γ E2 to 7/2 ⁻ .
						$T_{1/2}$: from DSAM in (¹ Li, $\alpha 2n\gamma$) (1972Ha59).
2122.07.0	11/2+a		d	V	7	configuration= $\pi(3p_{3/2})^{+1}$.
5152.97 9	11/2		u	K	Z	J^{π} : 3132.96 γ E1 to 9/2 ⁻ and 1524.1 γ to 13/2 ⁺ .
						L(p,p')=5, but the peak is a probable doublet, based
						on σ and on the observation that the (p,p')
						excitation function appears to resonate at both the T_{T}
						$J^{\pi}=5$ and / isobaric analog resonances. $I^{\pi}=(13/2^{+})$ in $(n n'\alpha)$
						configuration= $\pi(1h_{0/2})^{+1} \otimes \nu(2g_{0/2}^{+1}3p_{1/2}^{-1})_{5^{-1}}$
						(1974Cl07,1983Ma15).
						$\beta_5=0.067$ 4 from inelastic scattering (1967Al14).
3135.77 7	$(15/2)^{+u}$		d	K	Z	XREF: Others: AA, AC, AE, AH I^{π} , I (n n') = 5, 304 72x; M1 to 15/2 ⁺ and 1527 13x;
						J^{-1} L(p, p) = 5, 594.727 W1 to $15/2^{-1}$ and 1527.157 M1 to $13/2^{+}$. See also the 3133 level.
						configuration = $\pi (1h_{9/2})^{+1} \otimes \nu (2g_{9/2}^{+1} 3p_{1/2}^{-1})_{5^{-1}}$
	$(2, 2) \pm 0$				_	(1983Ma15).
3152.83 20	$(9/2)^{+\alpha}$			K	Z	XREF: Others: AA, AC I^{π} , L (p, p')=5, 2152, 80x, E1 to $0/2^{-1}$
						J = L(p,p) = 3, $S152.807 E1 to 9/2.$
						$\pi(1h_{9/2})^{+1} \otimes \nu(2g_{0/2}^{+1}3p_{1/2}^{-1})_{5^{-}}$ and
						$\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2}^{+1}3p_{1/2}^{-1/2})_{4^{-}} (1974Cl07).$
3154.06 6	17/2+ ^{<i>a</i>}			K	Z	XREF: Others: AA, AC, AE
						J^{A} : L(p,p')=5, 167.16 γ M1 to 19/2 ⁺ and 413.04 γ M1(+F2) to 15/2 ⁺ L(d t)=1 from 0 ⁻
						configuration: probable a mixture of
						$\pi(1h_{9/2})^{+1} \otimes \nu(2g_{0/2}^{+1}3p_{1/2}^{-1})_{5^{-}}$ and
						$\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2}^{+1}3p_{1/2}^{-1/2})_{4^{-}} (1974\text{Cl07}).$
3159.33 8	$3/2^{(+)}$			КМ	Z	XREF: Others: AA
						J^{n} : 314.2 γ (M1) to 1/2 ⁺ .
						configuration= $\pi(1n_{9/2})^{-1} \otimes \nu(2g_{9/2}^{-3}5p_{1/2}^{-1})^{4-1}$ (1983Ma15)
3169.07 6	$(13/2)^{+a}$			K	Z	XREF: Others: AA, AC, AH
						J^{π} : L(p,p')=5, 1560.49 γ M1 to 13/2 ⁺ . J=(11/2 ⁺)
						from $(n,n'\gamma)$ (1996De48).
						configuration= $\pi(1n_{9/2})^{-1} \otimes \nu(2g_{9/2}^{-1}3p_{1/2}^{-1})_{5^{-1}}$
3197.60 9	$(1/2^+, 3/2^+)$		D	КМ	Z	J^{π} : 352.3 γ (M1) to 1/2 ⁺ and 705.1 γ to 3/2 ⁺ .
3211.85 6	$(17/2)^{+a}$			К	Z	XREF: Others: AA, AC, AE
						J^{π} : L(p,p')=5, 225.05 γ (M1) to 19/2 ⁺ , L(d,t)=1 from
						9. $(1 + 1)^{+1} (2 + 1)^{-1}$
						configuration= $\pi(19/2)^{-1} \otimes V(2g_{9/2} \cdot 5p_{1/2})_{4^{-1}}$ (1983Ma15) Note that $\pi(1b_{2}a_{2})^{+1} \otimes 5^{-1}$ is
						(17031413) . 1000, unat $n(1119/2) \otimes 3_1$ 18

²⁰⁹Bi Levels (continued)

E(level) [†]	\mathbf{J}^{π}		XREF		Comments
					proposed in 1974Cl07.
3221.65 8	5/2+b		K	Z	XREF: Others: AA J^{π} : 455.02 (M1) to 3/2 ⁺ and $\gamma(\theta)$ is not consistent with a J to J transition; 131.45 γ to 7/2 ⁺ . configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2}^{+1}3p_{1/2}^{-1})_{4^{-}}$
3269 64 11	1/2+ 3/2+		км	7	(19/4Cl0/,1983Ma15). I ^{π} : 424 49 γ (M1) to 1/2 ⁺
3311.14 6	$(7/2^+, 9/2^+)$		K	Z	XREF: Others: AA, AC J^{π} : L(p,p')=(3). 2414 γ to 7/2 ⁻ and 3310 γ to 9/2 ⁻ . configuration= $\pi (1h_{9/2})^{+1} \otimes \nu (2g_{9/2}^{+1} 3p_{1/2}^{-1})_{4^-}$ (1974Cl07).
3354.8 4	$(5/2^+)^b$		K	Z	XREF: Others: AA J^{π} : from 588 γ to $3/2^+$ in (t,2n γ), but $\gamma(\theta)$ is not consistent with a L to L transition.
3362.00 11	(5/2 ⁺ ,7/2 ⁺ ,9/2 ⁺)		K	Z	XREF: Others: AA J^{π} : 2465.7 γ D to 7/2 ⁻ . Note, that J^{π} =(3/2 ⁺) from (n,n' γ) (1996De48).
3378.16 9	(9/2 ⁺) ^b		K	Z	XREF: Others: AA, AC, AH J^{π} : 3378.11 γ (E1) to 9/2 ⁻ . configuration= π (1h ₉ α) ⁺¹ \otimes ν (2g ⁺¹ $_{\alpha\beta}$ 3p ⁻¹ $_{\alpha\beta}$) ₄ - (1983Ma15).
3393.38 21	$(15/2^+)^b$		K	Z	XREF: Others: AA, AC J^{π} : 1784.8 γ D to 13/2 ⁺ . J=(17/2 ⁺) from (n,n' γ).
3395.00 11	5/2-,7/2,9/2,11/2-	d		Z	XREF: Others: AA, AC J^{π} : 2498.7 γ to 7/2 ⁻ and 3395.6 γ to 9/2 ⁻ .
3406.21 9	13/2 ⁺	D	KL N	Z	XREF: Others: AA, AC, AD, AE XREF: D(3400). J^{π} : L(α ,t)=6, 1797.64 γ M1 to 13/2 ⁺ ; $\gamma(\theta)$ is consistent with J to J transition. Note, that J=(11/2 ⁺) in (n,n' γ) (1996De48). configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2}^{+1}3p_{1/2}^{-1})_{4^{-}}$ (1974Cl07,1983Ma15).
3449.7 <i>4</i>	$(7/2^+)^b$		КМ	Z	XREF: Others: AA, AH J^{π} : 2553.4 γ (E1) to 7/2 ⁻ . configuration= π (1h _{9/2}) ⁺¹ $\otimes \nu$ (2g ⁺¹ _{9/2} 3p ⁻¹ _{1/2}) ₄ - (1974Cl07,1983Ma15).
3464.12 10	11/2 ⁺ <i>b</i>		K	Z	XREF: Others: AA, AC, AE J^{π} : L(d,t)=3 from 9 ⁻ for E=3469, L(p,p')=5 for E=3466, 3464.09 γ E1 to 9/2 ⁻ ; $\gamma(\theta)$ is not consistent with J to J transition. Note, that J=(9/2) ⁺ in (n,n' γ). configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2}^{+1}3p_{1/2}^{-1})_{4^-}$ (1974Cl07.1983Ma15).
3467.67 7	19/2 ⁺ <i>b</i>	d	K	Z	XREF: Others: AA, AC, AE J^{π} : L(d,t)=3 from 9 ⁻ for E=3469, L(p,p')=5 for E=3466. 480.87 γ M1 to 19/2 ⁺ , 313.70 γ to 17/2 ⁺ .
3486.93 7	(19/2 ⁺)	d	K	Z	J ^{π} : 500.12 γ (M1) to 19/2 ⁺ . probable configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(1i_{11/2}^{+1}3p_{1/2}^{-1})$ (1983Ma15).
3489.88 20	(7/2,9/2)	d	K	Ζ	J^{π} : 2593.6 γ to 7/2 ⁻ , 3490.1 γ to 9/2 ⁻ .
3502.23 12	$(15/2^+)^b$	d	K	Z	XREF: Others: AA J^{π} : 290.38 γ D to 17/2 ⁺ . configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2}^{+1}3p_{1/2}^{-1})_{4^{-1}}$ (1974Cl07,1983Ma15).
3505.28 20	5/2-,7/2-		N	Z	XREF: Others: AA J^{π} : L(α ,t)=3 for E=3503 15.
3541.60 21	(5/2 ⁻ ,7/2,9/2)		K	Ζ	XREF: Others: AA

E(level) [†]	\mathbf{J}^{π}		XREF		Comments
3575.08 21	(5/2,7/2 ⁺)	d	К	Z	J^{π} : 2545.3 γ to 7/2 ⁻ , 3542.7 γ to 9/2 ⁻ . XREF: Others: AA
3579.00 11	(17/2 ⁺ to 21/2 ⁺)	d	K		J [*] : 808y to 3/2 ⁺ and 26/8.8y to 7/2 ⁻ . XREF: Others: AA J ^{π} : L(p,p')=5, 592.2y D to 19/2 ⁺ . probable configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(1i_{11/2}^{+1}3p_{1/2}^{-1})$ (108230.15)
3590.50 21			М		(1985)Ma15).
3597.14 10	19/2+		K	Z	XREF: Others: AA, AE J^{π} : L(p,p')=5 and L(d,t)=1,3, 610.33 γ M1 to 19/2 ⁺ ; $\gamma(\theta)$ in (t,2n γ) is consistent with J to J transition. configuration= $\pi(1h_{9/2})^{+1} \otimes 5_2^-$ or $\pi(1h_{9/2})^{+1} \otimes 5_1^-$ (1974C107)
3601.72 11	(5/2 ⁺ ,7/2 ⁺ ,9/2 ⁺)		K	Z	XREF: Others: AA J^{π} : 2705 γ (E1) to 7/2 ⁻ . probable configuration= π (2f _{7/2}) ⁺¹ \otimes 3 ⁻ or π (1h _{9/2}) ⁺¹ \otimes 5 ⁻
3633.85 8	1/2-	dE	LMN P RS		(1983Ma15). XREF: Others: AA, AD, AF, AG XREF: N(3650)R(?). J^{π} : L(³ He,d)=L(α ,t)=1, analyzing power fits in (pol ⁷ Li, ⁶ He).
3684 <i>3</i>	17/2+,19/2+,21/2+	d			configuration= $\pi(3p_{1/2})^{+1}$. XREF: Others: AA E(level): from (p,p'). I^{π} . I (n p')=5 from 9/2 ⁻
3692.14 20	(11/2 ⁻)	D	Kn	Z	XREF: Others: AA, AF XREF: D(?). J ^π : suggested by 1972Ba81 in (t,α) on the basis of energy and strength as the h _{11/2} hole state, 3692.14γ to 9/2 ⁻ . configuration= $\pi(1h_{11/2})^{-1}$ (1972Ba81).
3703.55 20	7/2 ⁽⁺⁾	D	Kn	Ζ	 configuration: the authors of 19/2Ba81 in (t,α) also propose a small component with configuration=π(1h_{9/2})⁺¹⊗3⁻. XREF: Others: AA XREF: D(?). E(level): two close levels at this energy are reported in (n,n'γ) (1996De48). However, no strong evidence supports two separate levels and the 664.8γ and 3703γ were placed from the same level in (t,2nγ) while assigned to the two separate levels in (n,n'γ). The evaluators treat them as the same level. J^π: 664.8γ D to 5/2⁺ and 3703.4γ to 9/2⁻; π=+ from probable configuration=π(2f_{7/2})⁺¹⊗3⁻ or π(1h_{9/2})⁺¹⊗5⁻. See (n,n'γ) dataset for J^π comments for the two separate levels and the same level.
3717.64 10	$(7/2^+, 9/2^+, 11/2^+)$		Kn	Z	XREF: Others: AA
3735 5	(15/2 to 21/2) ⁺				S . From (t,2fry). Note, that (5/2 ⁻) in (n,n γ). XREF: Others: AA , AE E (level): from (p,p'). J ^{π} : L(d,t)=1,3 from 9 ⁻ for 3735+3766. If L=3 for the 3766 component, as suggested by the observed g.s. transition from that level, then L=1 and thus J=15/2 to 21/2 for the 3735 level.
3752.2 [#] 3			м	Z	XREF: Others: AA, AE
3766.9 [#] 3	$(11/2)^+$		n	Z	XREF: Others: AA , AE J^{π} : L(d,t)=1,3 from 9 ⁻ for 3735+3766. J is limited to 11/2 if

E(level) [†]	J^{π}		XREF			Comments
						the 3767 γ in (n,n' γ) can be assigned as a transition to the
3772 60 21			м			ground state.
3772.00 21	$(c_{10}, c_{17}, c_{17}, c_{17})$		V M		7	I^{π} , 2886 784 to 7/2 ⁻
3800 85 17	(3/2, 7/2, 9/2) $(7/2^+ 9/2^+)$	Ь	к п Ім		Z 7	J . 2000.707 to 7/2 . XREE: Others: AA
5000.05 17	(12,12)	ŭ			-	J^{π} : L(p,p')=(3), 2904.8 γ to 7/2 ⁻ and 3800.7 γ to 9/2 ⁻ .
3808.29 21		d	lM			XREF: Others: AA
3812.25 16	$23/2^+$		K			XREF: Others: AA, AE
						J^{n} : L(d,t)=3 from 9 ⁻ for E=3818, 825.45 γ E2 to 19/2 ⁺ .
						probable configuration= $\pi(1n_{9/2})^{-1} \otimes \nu(2g_{9/2}^{-1}2I_{5/2}^{-1})$
3816.70 <i>21</i>			М			J^{π} : 2920.4 γ to 7/2 ⁻ .
3817.86 20	$(11/2^+, 13/2^+)$	D	1		Ζ	XREF: Others: AA, AE
						J^{π} : 2209.3 γ to 13/2 ⁺ and 1253 γ to 9/2 ⁺ . L(d,t)=3 from 9 ⁻
						for $E=3818$, if this corresponds in part to the 3817 level,
3830 1	11/2+ 13/2+		N	D		would rule out $J=9/2$ and would require $\pi=+$.
5059 4	11/2 ,15/2		N	K		XREF: R(3870).
						E(level): from (p,p') .
						J^{π} : L(α ,t)=6 for E=3835 15.
3849.94 20			K		Z	XREF: Others: AA
3884.3 [#] 5					Z	XREF: Others: AA
3889.5# 3					Z	XREF: Others: AA
3905.9 3	$(15/2 \text{ to } 21/2)^+$				Z	XREF: Others: AA
5912 10	$(13/2 \ 10 \ 21/2)$					E(level): from (d,t).
						J^{π} : L(d,t)=1 from 9 ⁻ .
3913.26 <i>21</i>	$(1/2 \text{ to } 7/2^+)$		М			J^{π} : 1420.4 γ to 3/2 ⁺ .
3921.22 10	$(7/2^+, 9/2^+)$				Z	XREF: Others: AA $III_{12} = 20245$ and 20212 at the $0/2$ $I_{12} = 1/2$ (2)
2026 74# 10	$(12/2^{-})$		N		7	J [*] : $3024.3\gamma \gamma$ to $1/2$ and 3921.2γ to $9/2$, L(p,p)=(3).
3930.74" 10	(15/2)		N		2	AREF: Others: AA I^{π} : I (α t)>6. L is limited to 13/2 (and thus I -7) if the
						3937γ in $(n,n'\gamma)$ can be assigned as a ground-state
						transition.
3950 <i>5</i>	$(13/2^+ \text{ to } 17/2^+)$		1 n			XREF: Others: AA, AE, AF
						E(level): from (p,p') .
3962.27.22	(7/2 9/2)		1		7	J^{*} : L(p,p) = (3) Holl 9/2 . XREF: Others: AA AF AF
5702.27 22	(1/2,7/2)		-		-	J^{π} : 3066.1 γ to 7/2 ⁻ , 3962.1 γ to 9/2 ⁻ .
3980.04 10	$(11/2, 13/2)^{-}$		Kl	U	Ζ	XREF: Others: AA, AF
						J^{π} : L(p,p')=2, 3980 γ to 9/2 ⁻ .
						$g\Gamma_{\gamma 0}^2/\Gamma = 0.82$ 8.
1000 51 15	0/0+ 11/0 10/0- @				_	configuration= $\pi(1h_{9/2})^{+1}\otimes 2^{+}(19/4Cl07)$.
4000.71 75	9/2+,11/2,13/2-		n		Z	XREF: Others: AA, AF I^{π} : 2391 8v to 13/2 ⁺ and 4001v to 9/2 ⁻
4002 10	$(15/2 \text{ to } 23/2)^+$					XREF: Others: AA. AE. AF
						E(level): from (d,t).
						J^{π} : L(d,t)=1 from 9 ⁻ .
4009.3 [#] 4			n		Ζ	XREF: Others: AA, AE, AF
						E(level): if the 4009 γ is incorrectly assigned as a transition
						to the ground state, then the only evidence for a level at this energy is a $(n n')$ level at 4013.5. This level might be
						the same as the (d,t) level at 4002 10.
4021 10			n			XREF: Others: AE, AF

E(level) [†]	J^{π}		XREF			Comments
						E(level): from (d,t). I^{π} : I (α t)>6 for 4019.25
4036 5 [#] 4					7	XREF Others: AA
$404654^{\#}20$					7	XREF: Others: AA
4065 ^e 10					2	XREF: Others: AE E(laya): from (d t)
4079 ^e 7						XREF: Others: AA, AE
4088.34 10	$(5/2 \text{ to } 13/2)^{-}$		1	U	Ζ.	XREF: Others: AA, AC, AE, AF
1000001110	(0/2 00 10/2)		-	Ū.	_	XREF: AA(4092).
						J^{π} : L(p,p')=2 from 9/2 ⁻ .
						$g\Gamma_{\gamma 0}^2/\Gamma = 0.28 \ 3.$
4091.4 4	$(1/2^{-}, 3/2^{-})$		1M			XREF: Others: AE, AF
						J^{π} : 1648.5 γ to 1/2 ⁺ , π =- from probable configuration.
4006 24 17	$(0/2 \pm 11/2, 12/2 \pm)$				7	configuration= $\pi(1h_{9/2})^{+1} \otimes 2^+$ or $\pi(2f_{5/2})^{+1}$ (1974Cl07).
4090.34 17	(9/2, 11/2, 15/2)		1		Z	XREF: Others: AA, AB, AE, AF YDEE: AA(A101)
						I^{π} · 2488 2v to 13/2 ⁺ and 4096 1v to 9/2 ⁻
4096.59 22	$(1/2 \text{ to } 7/2^{-})$		1M			XREF: Others: AF
						J^{π} : 977.1 γ to 3/2 ⁻ .
4116 4	(*)					XREF: Others: AA, AE, AF
						J^{π} : L(p,p')=(7) from 9/2 ⁻ .
4100 7						E(level): from (p,p').
4123 /						XREF: Others: AA, AE, AF Educally from (n n')
4124 0# 20		D			7	Ellevel). Hom (p,p).
4134.0 20	21/2(+)	D	V		2	XREF: Others: AA
4141.95 10	21/2		ĸ			I^{π} : 544.85 γ and 654.98 γ D to I=19/2: π from probable
						configuration= $\pi (2f_{7/2})^{+1} \otimes 3^{-}$ or $\pi (1h_{9/2})^{+1} \otimes 5^{-}$ (1983Ma15).
4148.11 14	$(9/2^+, 11/2^-)$		1	U	Ζ	XREF: Others: AF
						J^{π} : 2539.6 γ to 13/2 ⁺ and 3251.6 γ to 7/2 ⁻ .
			_			$g\Gamma_{\gamma 0}^2/\Gamma=0.07\ 2.$
4158.79 19	-		1	U	Z	XREF: Others: AA, AB, AE, AF, AH
						XKEF: AA(4157). I^{π} : L (p p')=2, 3262 Set to $7/2^{-1}$ and 4158 Tet to $0/2^{-1}$
						$g\Gamma^2/\Gamma=0.21$ 4
4160.9 [#] 7	$(13/2^{-})$		1 n		7	$S^{1}\gamma^{0}$ = 0.21 7. XREF: Others: AA AR AC AF AC
4100.9 7	(13/2)		1 11		2	XREF AA(4162)
						J^{π} : L(p,p')=(2), $J^{\pi}=13/2^{-}$, 15/2 ⁻ for E=4174 25 from
						$L(\alpha,t)=7$. γ to $9/2^{-1}$ rules out the $15/2^{-1}$ alternative if the
						(α,t) peak corresponds to the 4161 level.
						configuration= $\pi(1h_{9/2})^{+1} \otimes 2^{+}$ (1974Cl07).
4168 7	$(11/2^{-} \text{ to } 15/2^{-})$	d	1 n			XREF: Others: AA
						E(level): from (p,p'). I^{π} : L (p, p')=(2): high gring are suggested in (a, d)
4176 14 10	$(7/2 9/2 11/2)^+$	d	1	п	7	XRFF: Others: AA
1170.1170	(7/2,7/2,11/2)	u	-	Ŭ	-	J^{π} : 4176.1 γ to 9/2 ⁻ , L(p,p')=3.
						$g\Gamma^2_{0}/\Gamma=0.21$ 4.
4207.5 4				U	Ζ	XREF: Others: AA, AB, AC, AE
						XREF: AA(4210).
						J^{n} : L(p,p')=2 (1974Cl07), L(p,p')=3 (1975Wa03).
						$g\Gamma_{\gamma 0}^2/\Gamma = 0.25 \ 3.$
						configuration= $\pi(1h_{9/2})^{+1} \otimes 2^{+}$ (1974Cl07).

E(level) [†]	J^{π}		XREF			Comments
4222.9 [#] 7			l n	U	Z	XREF: Others: AA, AC, AE, AF, AH
4225 10	$(15/2 \text{ to } 21/2)^+$		1			XREF: AH(4220). XREF: Others: AA AF AF
7225 10	(15/2 to 21/2)		-			E(level): from (d,t).
						J^{π} : L(d,t)=1 from 9 ⁻ .
4233.75 [#] 20	$(13/2)^{-}$		ln	U	Ζ	XREF: Others: AA, AF
						J ^{π} : L(α ,t)=7. J is limited to 13/2 if the 4233 γ in (n,n' γ) can
						be interpreted as a ground-state transition corresponding to the (art) level; otherwise $I^{\pi} = 12/2^{-1} 5/2^{-1}$ for $E = 4247/25$
4236.9 3			lM			The (α, t) level, otherwise, $J = 15/2$, $15/2$ for $E = 4247/25$. XREF: Others: AA, AF
4257 4	$(15/2 \text{ to } 21/2)^+$					XREF: Others: AA, AE
						E(level): from (p,p') .
10(0.05.00					_	J^{π} : L(d,t)=1 from 9 ⁻ .
4262.95 20	15/2- 17/2- 10/2-	л	D		Z	XREF: Others: AA AC AF AC AH
4280 5	15/2 ,17/2 ,19/2	U	К			XREF: $D(4276)R(4270)$.
						E(level): from (p,p').
						J^{π} : L(p,p')=4 from 9/2 ⁻ .
4297.73 17					Z	XREF: Others: AA, AC, AE
4200 75# 10	(+)				7	AREF: AA(4294).
4300.75" 10	(*)				Z	AREF: Others: AA I^{π} : L(p, p') \approx 7
4313? 7						XREF: Others: AA
						E(level): from (p,p') .
4326 3		D				XREF: Others: AA
1335 3 3					7	E(level): from (p,p').
4340 7 [#] 5					7	XREF. Others: AA
4349 7	$(15/2 \text{ to } 21/2)^+$				2	XREF: Others: AA, AE
						E(level): from (p,p') .
					_	J^{π} : L(d,t)=1 from 9 ⁻ .
4361.89 21	$(11/2, 13/2, 15/2)^{-1}$				Z	XREF: Others: AA I^{π} , I (n n')=4, 2752 200 to $12/2^{+}$
1276 5# 6					7	J . $L(p,p) = 4, 2755.57$ to $15/2$.
4381.31.21					Z 7	XREF: Others: AA
4388.15 19		d	р		z	XREF: Others: AA
						J^{π} : 3491.9 γ to 7/2 ⁻ and 4387.7 γ to 9/2 ⁻ .
4397.85 [#] 20		d	р		Ζ	XREF: Others: AA
4409.05 [#] 20		d			Ζ	XREF: Others: AA
4415 22 16	1/2-		T MNI			J^{π} : L(p,p') ≈ 8 from 9/2 ⁻ .
4415.55 10	1/2	E	LIIN			XREF: Oulers: AA, AB, AC, AE, AF XREF: $L(4421)N(4459)$
						J^{π} : 1295.9 γ to 3/2 ⁻ and 1922.4 γ to 3/2 ⁺ , L(³ He,d)=(1), p _{1/2}
						state suggested in (p,γ) and in $({}^{3}\text{He,d})$, $L(\alpha,t)=1+3$ for
						E=4459 25.
						configuration= $\pi(3p_{1/2})^{+1}$ (1970El13).
4417 10	$(15/2 \text{ to } 21/2)^+$					XREF: Others: AE
						J^{π} : L(d,t)=1 from 9 ⁻ .
4426.7 3			М			
4441.7 [#] 10	(7/2) ⁻		lMn		Ζ	XREF: Others: AA
						configuration= $\pi (2f_{7/2})^{+1}$ (1970El13).
						J ^{π} : L(p,p')=4, L(³ He,d)=(2,3), L(α ,t)=1+3 for E=4459 25.
						4439.1 γ to 9/2 ⁻ . Possible f _{7/2} state suggested in (³ He,d).

²⁰⁹Bi Levels (continued)

E(level) [†]	J^{π}		XREF			Comments
4471.0 3	(9/2+,11/2,13/2-)	d			Z	XREF: Others: AA, AE, AG XREF: AA(4469). J^{π} : 2862.5 γ to 13/2 ⁺ and 4470.5 γ to 9/2 ⁻ .
4478.2 <i>3</i> 4484.79 <i>11</i> 4506.85 <i>20</i> 4515.23 <i>10</i>	(9/2+,11/2,13/2-)	d d d d	М	U	Z Z Z	XREF: Others: AA XREF: Others: AA $W_{12} = 2006 \text{ for to } 13/2^{+} \text{ and } 4515 \text{ 3v to } 9/2^{-}$
4516.5 <i>3</i> 4522 <i>10</i>		d d	M L			XREF: Others: AA E(level): from (³ He,d). L(³ He,d)=low suggests that this level is distinct from that at 4515 or at 4532.
4532 4	(13/2 ⁻ ,15/2 ⁻)		N			XREF: Others: AA, AD, AE, AF XREF: N(4543). E(level): from (p,p'). J^{π} : L(p,p') \approx L(α ,t)=(7) for E=4543 25.
4588.3 3			Μ		Z	XREF: Others: AA, AC, AE, AF XREF: AA(4592).
4602.6 [#] 13	(5/2 ⁻ ,7/2,9/2 ⁺)	D	L		Z	J^{π} : L(³ He,d)=low for 4600 <i>10</i> , assuming L<5. 4602.5 γ to 9/2 ⁻ .
4613 5	5/2 ⁻ ,7/2 ⁻		N			XREF: Others: AA E(level): from (p,p'). J^{π} : L(α ,t)=3 for E=4613 25.
4646.1 [#] 3 4682.0 8 4700 25			n n		Z Z	XREF: Others: AA XREF: Others: AA E(level): one or both of the transitions with energy 4691.5 <i>3</i> and 4702.3 <i>4</i> reported in $(n,n'\gamma)$ could be ground-state transitions corresponding to the peak at 4700 seen in (α,t) and (p,p') .
4739.62 <i>21</i> 4750.79 <i>17</i>		d d	М		Z	
4755.76 20	(7/2,9/2,11/2) ^d	d		U	Z	XREF: Others: AA J^{π} : 4755.7 γ (D) to 9/2 ⁻ . $g\Gamma^{2}{}_{\alpha}\Gamma=2.8$ 4.
4762.3 <i>3</i> 4786.32 <i>21</i>			M		Z	XREF: Others: AA XREF: Others: AA
4789.8 <i>4</i>	(9/2+,11/2,13/2-)		n		Z	XREF: Others: AA J^{π} : 3181.1 γ to 13/2 ⁺ and 4790 γ to 9/2 ⁻ . L(α ,t)=6 for E=4795 25. See also 4796.1 level.
4796.1 <i>3</i>	(7/2,9/2,11/2) ^d		n	U	Z	XREF: Others: AA J ^{π} : 4796.0 γ (D) to 9/2 ⁻ , L(α ,t)=6 for E=4795 25. See also 4789.8 level. $g\Gamma^2$./ Γ =2 9 5
4830.3 <i>3</i>	$(7/2,9/2,11/2)^d$			U	Z	$S_{\gamma 0} r^{-2.75} S.$ XREF: Others: AA J^{π} : 4830.2 γ (D) to 9/2 ⁻ . $g\Gamma_{\gamma 0}^{2}\Gamma$ =1.4 2.
4837.6 <i>3</i> 4853.46 [#] 20 4879.47 <i>19</i> 4886 25	13/2 ⁻ ,15/2 ⁻		N		Z Z Z	XREF: Others: AA XREF: Others: AF XREF: Others: AF E(level): from (α,t) .
4904.2 <i>3</i> 4948.3 <i>5</i>		D	М		Z	XREF: Others: AA

²⁰⁹Bi Levels (continued)

E(level) [†]	J^{π}	XI	REF			Comments
4967.6 [#] 15					Z	XREF: Others: AA
4996.2 3	(13/2) ⁻		N I	R	Z	XREF: Others: AA J^{π} : L(α ,t)=7, J is limited to 13/2 if the 4996 γ in (n,n' γ) can be interpreted as a ground-state transition corresponding to the (α ,t) level; otherwise, J^{π} =13/2 ⁻ ,15/2 ⁻ for E=4998 25.
5054.0 <i>4</i> 5056.7 [#] 6	(11/2)+	1	M		Z	XREF: Others: AA XREF: Others: AA, AE J^{π} : L(d,t)=3 from 9 ⁻ , J is then limited to 11/2 if the 5057 γ in (n,n' γ) can be interpreted as a ground-state transition corresponding to the (d,t) level; otherwise $J^{\pi}=11/2^+$ to 25/2 ⁺
5087 25	5/2-,7/2-		N			E(level): one or both of the transitions with energy 5074.9 and 5096.6 reported in $(n,n'\gamma)$ could be ground-state transitions corresponding to the peak at 5087 seen in (α,t) . J^{π} : L(α,t)=3.
5131 6						XREF: Others: AA E(level): from (p,p'). J^{π} : L(p,p') \approx 7.
5152.2 3	(0/0+ 11/2 12/2=)	I	M		-	
5182.7 7	(9/2 ⁺ ,11/2,13/2 ⁻) 5/2 ⁻ ,7/2 ⁻		N	U	Z	J^{-1} : 5558.57 to 15/2 ⁻¹ and 5107.67 to 15/2 ⁻¹ . XREF: Others: AB , AD , AF , AH XREF: N(5173)U(?). J^{π} : L(α ,t)=3 for E=5173 25. $g\Gamma_{\alpha0}^2/\Gamma=0.9$ 3.
5190.7 4	1	I	M			
5235.1 3	(7/2,9/2,11/2) ^d			U	Z	XREF: Others: AA, AB, AC, AE, AF XREF: AA(5241). J^{π} : 5235.0 γ (D) to 9/2 ⁻ . $g\Gamma_{\chi 0}^2/\Gamma$ =1.4 3.
5256 10	+					XRĚF: Others: AEE(level): from (d,t). J^{π} : L(d,t)=3 from 9 ⁻ .
5277 25	13/2 ⁻ ,15/2 ⁻	i	N			E(level): from (α,t) . J ^{π} : L (α,t) =7.
5281.9 <i>11</i>	(7/2,9/2,11/2) ^a	i		U	Z	XREF: Others: AA J^{π} : 5281.8 γ (D) to 9/2 ⁻ . $g\Gamma_{\gamma 0}^{2}/\Gamma$ =5.5 11.
5292.7 4	4	i l	M			, o
5293.4 6	(7/2,9/2,11/2) ^a	i 1		U	Z	J^{π} : 5293.3 γ (D) to 9/2 ⁻ . g $\Gamma^{2}_{\gamma 0}/\Gamma$ =2.2 6.
5312.6 <i>13</i>	(7/2,9/2,11/2) ^d	i 1		U	Z	XREF: Others: AA J^{π} : 5312.5 γ (D) to 9/2 ⁻ . $g\Gamma^{2}$ _/ Γ =3.0 9.
5333 5						XREF: Others: AA E(level): from (p,p').
5354.0 4	(7/2,9/2,11/2) ^d			U	Z	XREF: Others: AA J^{π} : 5353.9 γ (D) to 9/2 ⁻ . $g\Gamma^{2}$. $f\Gamma=3$ 0.9
5367 10	+					XREF: Others: AA, AE E(level): one or both of the transitions with energy 5361.6 12 and 5371.9 7 reported in $(n,n'\gamma)$ could be ground-state transitions corresponding to the peak at 5367 seen in (d,t). $I^{\pi}: I(d,t)=3$ from 9^{-1}
5369.8 4	(1/2,3/2,5/2 ⁺)	I	М			J^{π} : 2926.9 γ to 1/2 ⁺ .

²⁰⁹Bi Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF				Comments
5380 25	13/2 ⁻ ,15/2 ⁻		N				E(level): several transitions in $(n,n'\gamma)$ could correspond to ground-state transitions from the peak at 5380 25 reported in (α,t) . J ^{π} : L (α,t) =7.
5404.5 [#] 6	(11/2)+					Z	XREF: Others: AE J^{π} : L(d,t)=3 from 9 ⁻ , J is limited to 11/2 if the 5404.5 γ in (n,n' γ) can be interpreted as a ground-state transition corresponding to the (d,t) level; otherwise $J^{\pi}=11/2^+$ to 25/2 ⁺ for E=5402 10.
5411.2 6					U	Z	E(level): unresolved multiplet in (γ, γ') with $g\Gamma(\gamma_0)^2/\Gamma=3.3 \ 8 \ (1980 \text{Ch}22).$
5424.62 24	(9/2+,11/2)				U	Z	XREF: Others: AA J ^{π} : 3815.9 γ to 13/2 ⁺ and 5424.6 γ to 9/2 ⁻ ; excitation in (γ , γ').
5440.2 10	(7/2,9/2,11/2)			r	U	Z	$g\Gamma_{\gamma 0}^{2}/\Gamma=1.75.$ J ^{π} : 5440.1 γ to 9/2 ⁻ ; excitation in (γ,γ').
5464.6 8	11/2+	0.39 fs 11	N	r	U	Z	$gI_{\gamma 0}/I = 1.6$ S. XREF: Others: AA, AE J^{π} : L(α ,t)=6 for E=5469 25, L(d,t)=3 for E=5464 10. 5464.5 γ to 9/2 ⁻ . $T_{1/2}$: deduced by evaluators from $\sigma\Gamma(\gamma \alpha)^2/\Gamma = 1.4 \text{ eV} 4 \text{ in } (\gamma \gamma')$
5484.4 5	(7/2,9/2,11/2) ^d				U	Z	J^{π} : 5484.3y (D) to 9/2 ⁻ .
5498.0 10	(7/2,9/2,11/2) ^d				U	Z	gf $_{\gamma_0}/1 = 4.0 \ 8.$ J ^{<i>x</i>} : 5497.9 γ (D) to 9/2 ⁻ .
5510.53 24	(9/2+,11/2,13/2-)				U	Z	$g\Gamma_{\gamma 0}^{2}/\Gamma$ =4.8 9. XREF: Others: AA E(level): unresolved multiplet in (γ , γ') with $g\Gamma(\gamma_{0})^{2}/\Gamma$ =6.8 12.
5523.5 <i>5</i> 5538.4 <i>7</i>	(7/2,9/2,11/2)				U	Z Z	E(level): unresolved multiplet in (γ, γ') with $g\Gamma(\gamma_0)^2/\Gamma=4.4$ 10.
5550 6 6	(7/2) 0/2 (11/2)		_			7	J [*] : 4641.8 γ to 7/2 and 5538.4 γ to 9/2 ; excitation in (γ, γ').
5559.0 0	(1/2,9/2,11/2)		п		U	Z	E(level): 5554 2 is reported in (γ, γ') . The evaluator assumes that this is the same level as that reported in $(n,n'\gamma)$. J ^{π} : 4663 γ to 7/2 ⁻ and 5559.8 γ to 9/2 ⁻ ; excitation in (γ, γ') . g $\Gamma^2_{-\alpha}/\Gamma=2.6.8$.
5563.4 <i>6</i> 5570.6 7	(11/2 ⁺)	0.32 fs 19	M n		U	Z	XREF: Others: AA XREF: Others: AA J^{π} : 5570.5 γ to 9/2 ⁻ , L(α ,t)=6 for E=5580 25. T _{1/2} : deduced by evaluators from $\sigma \Gamma(\alpha \alpha^2/\Gamma = 1.7 \text{ eV} \cdot 10 \text{ in } (\alpha \alpha')$
5589.2 7	(11/2 ⁺)	0.17 fs 5	n		U	Z	J^{π} : 5589.1 γ to 9/2 ⁻ , L(α ,t)=6 for E=5580 25. T _{1/2} : deduced by evaluators from
5609 5	11/2-	0.48 fs 10			U		g ₁ (γ ₀) ⁻ /1=3.2 eV 9 in (γ,γ). J ^π : 5609γ M1 to 9/2 ⁻ and γ(θ), γ(pol) in (γ,γ'). T _{1/2} : deduced by evaluators from Γ=0.95 eV 20 in (γ,γ') (1974Te01).

²⁰⁹Bi Levels (continued)

E(level) [†]	Jπ	T _{1/2}	XREF			Comments
5609.8 <i>3</i>					Z	
5652.6 [#] 8	(11/2) ⁺				Z	XREF: Others: AE J^{π} : L(d,t)=3 from 9 ⁻ , J is limited to 11/2 if the 5652.5 γ in (n,n' γ) can be interpreted as a ground-state transition corresponding to the (d,t) length otherwise $J^{\pi} = 11/2^{2}$ for $E = 5657/10$
5662.1 20	(7/2,9/2,11/2)			U		J^{π} : 5662 γ to 9/2 ⁻ ; excitation in (γ, γ'). $g\Gamma^{2}_{\alpha}/\Gamma=1.6$ 4.
5668.3 <i>3</i> 5693-25	$(3/2^+ 5/2^+)$		M			$E(\text{level})$: from (α t)
5760 5	(3/2 ,3/2)					J^{π} : L(α ,t)=(2).
5709 5						E(level): from (p,p') .
5788.7 <i>4</i> 5795 7			М			XREF: Others: AA
5835 8						XREF: Others: AA
5925.1 <i>17</i>	(11/2)+				Z	E(level): probable multiplet from (p,p'). XREF: Others: AE J^{π} : L(d,t)=3 from 9 ⁻ . J is limited to 11/2 if the 5925.1 γ in (n,n' γ) can be interpreted as a ground-state transition corresponding to the (d,t) level: otherwise I^{π} =11/2 ⁺ to 25/2 ⁺ for E=5924 IO
6301.1 4			M			10001, 0010100130 = 11/2 = 10 = 25/2 = 101 = -5724 = 10.
6382.0 6 6392 8			M	U		
6556.1 <i>10</i> 6712 2 <i>4</i>			м	U		
6900.5 7			M			
6911? 4	(7/2,9/2,11/2)			U		J ^{<i>n</i>} : 6911 γ to 9/2 ⁻ ; excitation in (γ , γ'). g Γ^2_{γ}/Γ =2.4 5.
6944.8 <i>21</i>	(7/2,9/2,11/2)			U	Z	XREF: U(?). J ^{π} : 6944.7 γ to 9/2 ⁻ ; excitation in (γ , γ').
6983 4	(7/2,9/2,11/2)			U		gi $\frac{1}{\gamma_0}/1 = 2.1$ 0. J ^{π} : 6983 γ to 9/2 ⁻ ; excitation in (γ, γ').
7106? 4	(7/2,9/2,11/2)			U		$g_{1} \gamma_{0} \gamma_{1} = 2.6.5.$ J ^{π} : 7106 γ to 9/2 ⁻ ; excitation in (γ, γ').
7168.1 <i>10</i>	9/2+	0.56 fs 3	L	U		$g\Gamma_{00}^{2}/T=1.0$ 3. XREF: Others: AB, AD, AF, AH
						XREF: L(/153). J ^π : 7168γ E1 to 9/2 ⁻ and γ(θ), γ(pol) in (γ,γ'). T _{1/2} : deduced by evaluators from Γ =0.82 eV 4 in (γ,γ') (1972Wo21).
7171 4	(7/2,9/2,11/2)			U		J^{π} : 7171 γ to 9/2 ⁻ ; excitation in (γ , γ').
7176.6 10	(7/2,9/2,11/2)			U	Z	gr $_{\gamma_0}/1 = 4.770$. XREF: U(?). J ^{π} : 7176.5 γ to 9/2 ⁻ ; excitation in (γ, γ').
7202 5	11/2+,13/2+		N	U		gl $\frac{2}{\gamma_0}/1$ =24 5. XREF: Others: AA, AC, AH XREF: N(7200). J ^{π} : L(α ,t)=6; 7202 γ to 9/2 ⁻ ; excitation in (γ , γ').
7243.9 13	(7/2,9/2,11/2)			U	Z	g1 $\frac{1}{\gamma_0/1} = 50$ 5. J ^{π} : 7243.8 γ to 9/2 ⁻ ; excitation in (γ, γ').
7264 4	(7/2,9/2,11/2)			U		$g\Gamma_{\gamma0}^{(1-5.7)}$ 0. $g\Gamma_{\gamma0}^{(2-5.7)}/\Gamma=2.4$ 9.

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
7279.1 10				U	J^{π} : 7264 γ to 9/2 ⁻ ; excitation in (γ , γ').
7279+x				U	Additional information 2. $F(evel): x \approx 200 \text{ eV}$ See $(\gamma \gamma')$
7287 4	(7/2,9/2,11/2)			U	J^{π} : 7287 γ to 9/2 ⁻ ; excitation in (γ , γ ').
7360 4	(7/2,9/2,11/2)			U	$g_{1\gamma0}/1 = 2.6 \ /.$ J ^{<i>n</i>} : 7360y to 9/2 ⁻ ; excitation in (γ,γ').
7416.1 10	9/2-	1.9 fs +46-12		U	gl $\frac{\gamma}{\gamma_0}/1 = 4.3 \ TI.$ J ^{π} : from 7416 $\gamma(\theta)$ (D) to 9/2 ⁻ and γ, γ (pol) in (γ, γ'). T _{1/2} : deduced by evaluators from Γ =0.24
7632.1 10	(9/2+)	<0.9 fs		UV	eV +38-1/ in (γ, γ') . J ^{π} : from L(γ ,n)=0 to 5 ⁺ and 4 ⁺ ; 7632 $\gamma(\theta)$ (D) to 9/2 ⁻ . T _{1/2} : deduced by evaluators from Γ >0.5 eV in (γ, γ') .
8400			Р	,	$\Gamma = 4 \text{ MeV}$ F(ava): from (⁷ L i ⁶ Ha)
8.7×10 ³ 5			N		E(level): from (α, t) .
9000					J ^{<i>n</i>} : L(α ,t)=(6+7). XREF: Others: AB E(level): from (p,p') giant resonance. L=(2) α EWSP(E2)=0
$10.3 \times 10^3 5$			L		$L=(2). \ \% E \le SR(E2)=9.$
10.9×10 5				ľ	F=2.7 MeV 3 Γ =2.7 MeV 3 E(level), Γ : from (α, α') giant resonance. Others: E=10.9 MeV, Γ =2.7 MeV from (e,n) giant resonance; E=10.7 MeV, Γ =2.2 MeV from (p,p') giant resonance. %EWSR(E2)=50 30 from (e,n); 90-150 for L=2, or 50-150 for L=2 with 20-40% for L=4 from (α, α').
13450 <i>10</i>				UY	 XREF: Others: AD Γ=3.89 MeV 3 E(level), Γ: from (e,n) giant resonance. Other: (γ,γ'), (α,α'): giant resonance. %EWSR=80-120 for L=0 and 30-50 for L=2 with the maximum contribution from L=4 giving %EWSR=15-30 ((α,α'): giant resonance).
18627 [‡] 4	9/2+ <i>c</i>		GH	W	
19382 [‡] 26	$(11/2^+)^c$		GH	W	
20.10×10^{34} 15	$(15/2^+)^c$		Н		
$20186^{\ddagger} 4$ $20671^{\ddagger} 6$	$5/2^{+0}$		GH		
21114^{\ddagger} 16	$7/2^{+c}$		GH		
21172^{\ddagger} 18	$3/2^{+c}$		Н		
≈22000			F	ХҮ	E(level): reported values are 20.2 MeV with Γ =6 MeV in (e,n), \approx 20 MeV with Γ =8 MeV in (e,e'), and \approx 23 MeV with Γ \approx 3.5 MeV in (p, γ) giant resonance.

²⁰⁹Bi Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
	_			%EWSR(E2)=200 90 determined in (e,n). E2 or E0 excitation suggested in (e,e'), but observation in (p,γ) rules out E0. Possible isovector E2 giant resonance.

 † From a least-squares fit to $\gamma\text{-ray energies, unless otherwise noted.}$

^{\ddagger} IAR from ²⁰⁸Pb(p,p'),(pol p,p'). See the IAR source data sets for information on widths.

[#] From E γ to ground state in $(n,n'\gamma)$. The placement of the authors is based on the agreement in energy with a previously-known level. Since only a single transition is observed, the existence of the $(n,n'\gamma)$ level is not definitely established.

^(e) From 1996De48 in $(n,n'\gamma)$, based on comparisons of the measured γ -yields with the theoretical predictions based on the statistical model of the compound nucleus.

& L(p,p')=3, σ (p,p'). See comment "particle-vibration coupled states (²⁰⁸Pb 3⁻)".

^{*a*} L(p,p')=5. See comment "particle-vibration coupled states (208 Pb 4⁻, 5⁻)".

^b See comment "particle-vibration coupled states (208 Pb 4⁻,5⁻).

^c from 208 Pb(p,pol p), analog resonance to the levels in 209 Pb.

^d Excitation in (γ, γ') is probably D (or D+Q). The measured values of $g\Gamma(\gamma_0)^2/\Gamma$ lead to B(E2)(W.u.)>10. Values this large are not expected for the probable configurations involved.

^e L(d,t)=1 from 9^- for 4065+4084+4122 peak.

1						Ado	pted Levels,	Gammas (con	ntinued)
							<u> </u>	(²⁰⁹ Bi)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^{π}	Mult. ^b	δ^{e}	α^{d}	Comments
896.28	7/2-	896.28 [‡] 7	100 [‡]	0.0	9/2-	M1+E2	-0.62 6	0.0208 8	
1608.57	13/2+	1608.53 [‡] 8	100‡	0.0	9/2-	M2+E3	+0.33 10	0.0127 5	Coulomb excitation (1973Kr02). $\alpha(K)=0.0103 \ 4; \ \alpha(L)=0.00182 \ 7; \ \alpha(M)=0.000431 \ 15$ $\alpha(N)=0.000110 \ 4; \ \alpha(O)=2.25\times10^{-5} \ 8; \ \alpha(P)=2.67\times10^{-6} \ 10; \ \alpha(IPF)=6.36\times10^{-5} \ 13$ B(M2)(W.u.)=0.32 \ 18; B(E3)(W.u.)=7 \ 6 Mult: A2=+0.47 2 (1978Be17) in (⁷ Li, α 2n γ) and A2=+0.42 I (1983Ma15) in (t,2n γ).
2442.92	1/2+	1546.52 9	100	896.28	7/2-	E3		0.00639	δ: from $\gamma(\theta)$ in (⁷ Li,α2nγ) (1978Be17). B(E3)(W.u.)=1.95 7 α(K)=0.00499 7; α(L)=0.001032 15; α(M)=0.000248 4 α(N)=6.34×10 ⁻⁵ 9; α(O)=1.276×10 ⁻⁵ 18; α(P)=1.437×10 ⁻⁶ 21; α(IPF)=3.68×10 ⁻⁵ 6 E : weighted average of 1546 47 5 in (t 2nγ) 1546 7 L in
2492.86	3/2+	(49.94 7)	≈1.6	2442.92	1/2+	[M1]		14.51	ky. weighed average of 1540.47 5 in (t,211γ), 1540.77 in (n,n'γ) and 1546.2 5 in (d,nγ). Mult.: α (K)exp=0.0054 14 in (d,nγ) (1978E107), $\gamma(\theta)$ is isotropic from (t,2nγ) (1983Ma15). α (L)=11.08 17; α (M)=2.61 4 α (N)=0.668 10; α (O)=0.1364 20; α (P)=0.01623 24 B(M1)(W.u.)≈0.073 E _γ ,I _γ : from (t,2nγ) (1983Ma15). Transition not seen directly. Energy from level energy difference and total intensity inferred from $\gamma\gamma$ to be ≈20% of the branching from the 2493 level. Mult.: from J ^π difference and RUL. B(E2)(W.u.)(49.94γ) would be 710 if mult were pure E2. This is an unreasonably
		2492.86 [‡] 11	100 [‡]	0.0	9/2-	[E3]		0.00275	large value for this mass region. B(E3)(W.u.) ≈ 20 $\alpha(K)=0.00197 \ 3; \ \alpha(L)=0.000347 \ 5; \ \alpha(M)=8.17\times10^{-5} \ 12$ $\alpha(N)=2.09\times10^{-5} \ 3; \ \alpha(O)=4.24\times10^{-6} \ 6; \ \alpha(P)=4.96\times10^{-7} \ 7;$ $\alpha(PP)=0.000325 \ 5$
2564.14	(9/2)+	2564.12 [‡] 10	100‡	0.0	9/2-	E1+E3	0.026 <i>3</i>	1.43×10 ⁻³	$\alpha(K) = 0.000449 \ 7; \ \alpha(L) = 6.65 \times 10^{-5} \ 10; \ \alpha(M) = 1.531 \times 10^{-5} \ 22$ $\alpha(N) = 3.90 \times 10^{-6} \ 6; \ \alpha(O) = 7.98 \times 10^{-7} \ 12; \ \alpha(P) = 9.57 \times 10^{-8} \ 14; \ \alpha(PF) = 0.000897 \ 13$ B(E1)(W.u.)=0.00076 \ 16; B(E3)(W.u.)=29 \ 9 Mult.: A ₂ =+0.25 \ 3 \ (1983Ma15) \ in \ (t,2n\gamma). δ : From the Adopted half-life of 0.015 ps 3 and B(E3)=0.073 11,

From ENSDF

 $^{209}_{83}{
m Bi}_{126}$ -18

						Adopted	Levels, Gam	nas (continued)	
						<u>)</u>	v(²⁰⁹ Bi) (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{e}	α^{d}	Comments
2583.02	$(7/2)^+$	1686.66 [‡] 10	100 [‡] 2	896.28	7/2-	E1		1.36×10^{-3}	$\alpha(K)=0.000885 \ 13; \ \alpha(L)=0.0001327 \ 19; \ \alpha(M)=3.06\times 10^{-5}$
		2583.07 [‡] 10	46 [‡] 2	0.0	9/2-	E1+E3	0.19 3	1.48×10 ⁻³ 3	α(K)=0.000492 18; α(L)=7.4×10-5 3; α(M)=1.72×10-5 8 α(N)=4.38×10-6 19; α(O)=9.0×10-7 4; α(P)=1.07×10-7 5; α(IPF)=0.000890 14 B(E1)(W.u.)=1.1×10-5 4; B(E3)(W.u.)=22 10 Iγ: In (n,n'γ), the 30 1 from 1984Pr08 appears to be an outlier and in weighted average, 46.8 18 from 2008Mi01 in (n,n'γ) is used. Mult.,δ: A2=+0.20 5 (1983Ma15) in (t,2nγ).
2599.91	11/2+	992.0 5	17.6 24	1608.57	13/2+	[M1]		0.0196	δ: From the Adopted half-life of 0.31 ps 10 andB(E3)=0.067 4, weighted average of 0.065 10 fromCoulomb excitation (1969He07) and 0.067 4 (1968Zi02).Note, that B(E3)=0.67 4 is quoted in 1968Zi02, whichis a typo. $ α(K)=0.01611 23; α(L)=0.00269 4; α(M)=0.000629 9 $
									α (N)=0.0001609 23; α (O)=3.29×10 ⁻⁵ 5; α (P)=3.94×10 ⁻⁶ 6 B(M1)(W.u.)=0.09 3 E _{γ} ,I _{γ} : from Coulomb excitation (1969He07).
		2599.9 [‡] 1	100 [‡] 2	0.0	9/2-	E1+E3	0.051 8	1.45×10 ⁻³	α(K)=0.000442 7; α(L)=6.55×10-5 10; α(M)=1.508×10-5 22 α(N)=3.84×10-6 6; α(O)=7.86×10-7 12; α(P)=9.43×10-8 14; α(IPF)=0.000918 13 B(E1)(W.u.)=0.00026 8; B(E3)(W.u.)=36 15 Mult.: (D) from γ(θ) in (t,2nγ). δ: from the adopted T1/2 of 36 fs 10 and B(E3)=0.078 12 from Coulomb excitation (1969He07).
2600.92	13/2+	992.35 [‡] 2	100 [‡] <i>1</i>	1608.57	13/2+	M1(+E2)	-0.04 4	0.0196	α(K)=0.01608 23; α(L)=0.00269 4; α(M)=0.000628 9 α(N)=0.0001606 23; α(O)=3.28×10-5 5; α(P)=3.93×10-6 β(M1)(W.u.)=(0.050 16); B(E2)(W.u.)=(0.03 +6-3) Mult.: A2=+0.27 4 in (7Li,α2nγ) (1978Be17), A2=+0.27 2 in (t,2nγ) (1983Ma15). δ: from 1978Be17 in (7Li,α2nγ) based on a comparison of the experimental B(E2) for each δ solution with the value from a weak-coupling calculation.

						Adopted Lev	vels, Gamm	nas (continued)	
						$\gamma(^2$	⁰⁹ Bi) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{e}	α^{d}	Comments
2600.92	13/2+	2600.6 5	1.3 5	0.0	9/2-	(M2+E3)	>0.9	0.0031 6	
2617.34	5/2+	124.48 [#] 5	5.24 [#] 21	2492.86	3/2+	M1(+E2)		5.45	$\alpha(K)=4.43$ 7; $\alpha(L)=0.778$ 11; $\alpha(M)=0.183$ 3 $\alpha(N)=0.0468$ 7; $\alpha(O)=0.00957$ 14; $\alpha(P)=0.001139$ 16 Mult.: A ₂ =-0.05 5 from (t,2n γ) (1983Ma15).
		1721.08 [‡] <i>13</i>	100 [‡] 5	896.28	7/2-	E1(+M2)		0.00145 <i>11</i>	$\alpha(K)=0.00094 \ 9; \ \alpha(L)=0.000143 \ 15; \ \alpha(M)=3.3\times10^{-5} \ 4$ $\alpha(N)=8.4\times10^{-6} \ 9; \ \alpha(O)=1.72\times10^{-6} \ 19; \ \alpha(P)=2.05\times10^{-7} \ 22; \ \alpha(IPF)=0.000323 \ 5$ Mult: $\Delta_2=-0.04 \ 4 \ from (t \ 2nx) (1983Ma15)$
		2617.35 [‡] 10	50.2 [‡] 14	0.0	9/2-	E3(+M2)		0.00354 97	$\alpha(K)=0.00254 \ 75; \ \alpha(L)=4.3\times10^{-4} \ 12; \ \alpha(M)=1.02\times10^{-4} \ 29 \\ \alpha(N)=2.60\times10^{-5} \ 72; \ \alpha(O)=5.3\times10^{-6} \ 15; \ \alpha(P)=6.3\times10^{-7} \\ 19; \ \alpha(IPF)=0.00043 \ 6 \\ Mult.: \ from Coulomb excitation.$
2741.05	15/2+	140.13 [#] 1	14.47 [#] 23	2600.92	13/2+	M1(+E2)	<0.3	3.80 11	$\alpha(K)=3.05\ 13;\ \alpha(L)=0.572\ 20;\ \alpha(M)=0.136\ 6$ $\alpha(N)=0.0347\ 15;\ \alpha(O)=0.0070\ 3;\ \alpha(P)=0.000818\ 14$ B(M1)(W.u.)>0.042?; B(E2)(W.u.)<89? Mult., δ : from $\alpha(exp)=4.1\ 3$ based on I(γ +ce)(140 γ)/I γ (1132+2741 γ 's)=0.356\ 22 in (⁷ Li, α 2n γ) (1978Be17) and relative I γ data in (t,2n γ) (1983Ma15).
		1132.46 ^{‡a} 4	67.7 [#] 8	1608.57	13/2+	M1+E2	+0.14 4	0.01380 22	α(K)=0.01133 18; α(L)=0.00189 3; α(M)=0.000441 7 $α(N)=0.0001128 18; α(O)=2.31×10^{-5} 4; α(P)=2.76×10^{-6} $ $5; α(IPF)=9.98×10^{-7} 16$ B(M1)(W.u.)=0.00046 7; B(E2)(W.u.)=0.0025 15 Mult.: A ₂ =-0.12 1, A ₄ =-0.02 3 (1978Be17) in (⁷ Li,α2nγ). δ: from γ(θ) in (⁷ Li,α2nγ) (1978Be17), +0.05 from (t,2nγ) (1983Ma15).
		2741.03 [‡] <i>a</i> 6	100 [#] I	0.0	9/2-	E3		0.00243	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001645 \ 23; \ \alpha(\mathbf{L}) = 0.000283 \ 4; \ \alpha(\mathbf{M}) = 6.65 \times 10^{-5} \ 10 \\ &\alpha(\mathbf{N}) = 1.699 \times 10^{-5} \ 24; \ \alpha(\mathbf{O}) = 3.46 \times 10^{-6} \ 5; \ \alpha(\mathbf{P}) = 4.06 \times 10^{-7} \\ &6; \ \alpha(\mathbf{IPF}) = 0.000416 \ 6 \\ &\mathbf{B}(\mathbf{E3})(\mathbf{W}.\mathbf{u}.) = 18.6 \ 25 \\ &\mathbf{Mult.:} \ \mathbf{A}_2 = + 0.48 \ 1 \ (1983\text{Ma15}) \ \text{in} \ (t, 2n\gamma) \ \text{and} \ \mathbf{A}_2 = + 0.42 \ 3 \\ &(1978\text{Be17}) \ \text{in} \ (^7\text{Li}, \alpha 2n\gamma). \end{aligned}$

I

					Adopted	l Levels, Gamr	mas (continued)
						γ ⁽²⁰⁹ Bi) (cont	tinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J'	Mult. ^b	α^{d}	Comments
2766.66	3/2+	149.3 [#] 1	6.2 [#] 3	2617.34 5/2	2 ⁺ [M1]	3.25	α (K)=2.65 4; α (L)=0.462 7; α (M)=0.1088 16 α (N)=0.0278 4; α (O)=0.00569 8; α (P)=0.000677 10
		273.80 [#] 3	31.8 [#] 4	2492.86 3/2	2 ⁺ [M1]	0.596	α (K)=0.486 7; α (L)=0.0841 12; α (M)=0.0198 3 α (N)=0.00506 7; α (O)=0.001033 15; α (P)=0.0001230 18
		323.74 [#] 2	100 [#] 2	2442.92 1/2	2 ⁺ M1	0.377	α (K)=0.308 5; α (L)=0.0530 8; α (M)=0.01246 18 α (N)=0.00319 5; α (O)=0.000651 10; α (P)=7.75×10 ⁻⁵ 11 Mult : A ₂ =-0.08 4 (1983Ma15)
		2766.9 2	≈8	0.0 9/2	<u>)</u>		E_{γ}, I_{γ} : Reported only in $(n, n'\gamma)$. There is a peak at about this energy in the $(t, 2n\gamma)$ spectrum, and the evaluators estimate $I\gamma/I\gamma(324\gamma)\approx 0.08$.
2826.1	5/2-	1929.9 [‡] 5	39 <i>3</i>	896.28 7/2	2 ⁻ [M1]	0.00397	$\alpha(K)=0.00294 5; \alpha(L)=0.000483 7; \alpha(M)=0.0001128 16$ $\alpha(N)=2.88\times10^{-5} 4; \alpha(O)=5.90\times10^{-6} 9; \alpha(P)=7.08\times10^{-7} 10;$ $\alpha(IPF)=0.000392 6$ B(M1)(W.u.)=0.124 19 Ly: weighted average of 33.9 from (t 2ny), and 48.4 (1984Pr08) and
		•••••					37.1 19 (2008Mi01) from $(n,n'\gamma)$.
		2826.0+ 4	100 2	0.0 9/2	2 ⁻ Ε2	1.67×10^{-5}	$\begin{aligned} \alpha(K) &= 0.000850 \ 12; \ \alpha(L) &= 0.0001339 \ 19; \ \alpha(M) &= 3.11 \times 10^{-5} \ 5 \\ \alpha(N) &= 7.93 \times 10^{-6} \ 12; \ \alpha(O) &= 1.620 \times 10^{-6} \ 23; \ \alpha(P) &= 1.93 \times 10^{-7} \ 3; \\ \alpha(IPF) &= 0.000641 \ 9 \\ B(E2)(W.u.) &= 4.4 \ 6 \end{aligned}$
2015 20	1/0+	70 (0# 10	1.5#	276666	.+		Mult.: $A_2 = +0.17 5$ (1983Ma15) in (t,2n γ).
2845.20	1/2*	$78.60^{"}$ 10	≈15" 100 [#] 2	2/66.66 3/2)+		
2916.62	(1/2)+	402.27 5 149.98 [#] 5	100 2 100 [#]	2766.66 3/2	2+ M1+E2	3.21	$\alpha(K)=2.61 \ 4; \ \alpha(L)=0.457 \ 7; \ \alpha(M)=0.1074 \ 15$ $\alpha(N)=0.0275 \ 4; \ \alpha(O)=0.00561 \ 8; \ \alpha(P)=0.000668 \ 10$ Mult.: A ₂ =+0.04 8 (t,2n γ) (1983Ma15).
2955.93	$(3/2)^+$	110.67 [#] 15	4.2 [#] 4	2845.20 1/2	2 ⁺ [M1]	7.63	$\alpha(K)=6.20 \ 9; \ \alpha(L)=1.091 \ 16; \ \alpha(M)=0.257 \ 4 \\ \alpha(N)=0.0657 \ 10; \ \alpha(O)=0.01342 \ 20; \ \alpha(P)=0.001597 \ 24$
		338.65 [#] 10	15.7 [#] 18	2617.34 5/2	2 ⁺ [M1]	0.334	α (K)=0.272 4; α (L)=0.0469 7; α (M)=0.01101 16 α (N)=0.00282 4: α (O)=0.000575 8: α (P)=6.85×10 ⁻⁵ 10
		463.04 [#] 8	100 [#] 3	2492.86 3/2	2 ⁺ [M1]	0.1438	$\alpha(K) = 0.1175 \ 17; \ \alpha(L) = 0.0201 \ 3; \ \alpha(M) = 0.00471 \ 7 \ \alpha(N) = 0.001204 \ 17; \ \alpha(\Omega) = 0.000246 \ 4; \ \alpha(P) = 2.94 \times 10^{-5} \ 5$
		513.0 [#]	<3.6#	2442.92 1/2	2 ⁺ [M1]	0.1095	$\begin{aligned} \alpha(K) &= 0.0896 \ 13; \ \alpha(L) = 0.01526 \ 22; \ \alpha(M) = 0.00358 \ 5 \\ \alpha(N) = 0.000915 \ 13; \ \alpha(O) = 0.000187 \ 3; \ \alpha(P) = 2.23 \times 10^{-5} \ 4 \\ E_{\gamma}, I_{\gamma}: \ transition \ not \ observed. \ E_{\gamma} \ from \ energy \ level \ difference. \\ Branching < 3\% \ is \ reported \ in \ (t, 2n\gamma) \ (1983Ma15). \end{aligned}$
		2954.7 ^{<i>f</i>} 4	<22	0.0 9/2	E ⁻ [E3]	0.00223	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.001424 \ 20; \ \alpha(\mathrm{L}) = 0.000242 \ 4; \ \alpha(\mathrm{M}) = 5.66 \times 10^{-5} \ 8 \\ &\alpha(\mathrm{N}) = 1.447 \times 10^{-5} \ 21; \ \alpha(\mathrm{O}) = 2.95 \times 10^{-6} \ 5; \ \alpha(\mathrm{P}) = 3.48 \times 10^{-7} \ 5; \\ &\alpha(\mathrm{IPF}) = 0.000493 \ 7 \end{aligned} $

I

γ (²⁰⁹Bi) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	α^{d}	Comments
								E_{γ} , I_{γ} : reported only in $(n,n'\gamma)$ although there is a possible indication of a peak at this energy in $(t,2n\gamma)$. From the $(t,2n\gamma)$ spectrum, the evaluator estimates $I\gamma$ <22 relative to $I\gamma$ (463 γ)=100 The energy expected from the level scheme is 2955.87 7.
2986.80	19/2+	245.73 [#] 2	100#	2741.05	15/2+	E2	0.224	B(E2)(W.u.)=0.387 <i>12</i> α (K)=0.1046 <i>15</i> ; α (L)=0.0893 <i>13</i> ; α (M)=0.0233 <i>4</i> α (N)=0.00593 <i>9</i> ; α (O)=0.001114 <i>16</i> ; α (P)=9.44×10 ⁻⁵ <i>14</i> Mult.: A ₂ =+0.26 <i>3</i> in (⁷ Li, α 2n γ) (1978Be17), A ₂ =+0.31 <i>5</i> in (t,2n γ) (1983Ma15), T _{1/2} rules out M2.
		385.9 ^f	<0.8	2600.92	13/2+	[M3]	2.14	α(K)=1.444 21; α(L)=0.520 8; α(M)=0.1349 19 α(N)=0.0350 5; α(O)=0.00699 10; α(P)=0.000759 11 B(M3)(W.u.)=8.E+3 8 Eγ,Iγ: transition not observed. Eγ from level energy difference. Branching limit reported in (7Li,α2nγ) (1978Be17).
3038.88	5/2+	272.2 [#] 1	25.6 [#] 6	2766.66	3/2+	(M1+E2)	0.606	α (K)=0.494 7; α (L)=0.0855 12; α (M)=0.0201 3 α (N)=0.00514 8; α (O)=0.001050 15; α (P)=0.0001250 18 Mult.: A ₂ =-0.02 4 (1983Ma15).
		2142.78 18	100 9	896.28	7/2-	E1	1.34×10 ⁻³	$\alpha(K)=0.000598 \ 9; \ \alpha(L)=8.89\times10^{-5} \ 13; \ \alpha(M)=2.05\times10^{-5} \ 3 \ \alpha(N)=5.22\times10^{-6} \ 8; \ \alpha(O)=1.066\times10^{-6} \ 15; \ \alpha(P)=1.276\times10^{-7} \ 18; \ \alpha(IPF)=0.000626 \ 9 \ Mult.: \ A_2=-0.07 \ 3 \ (1983Ma15) \ in \ (t,2n\gamma).$
3090.16	(7/2)+	2194.1 2	18.6 <i>13</i>	896.28	7/2-	[E1]	1.35×10^{-3}	$\alpha(K)=0.000576\ 8;\ \alpha(L)=8.55\times10^{-5}\ 12;\ \alpha(M)=1.97\times10^{-5}\ 3$ $\alpha(N)=5.02\times10^{-6}\ 7;\ \alpha(O)=1.026\times10^{-6}\ 15;\ \alpha(P)=1.227\times10^{-7}\ 18;$ $\alpha(PF)=0.000661\ 10$
		3089.96 12	100 2	0.0	9/2-	(E1+M2)	0.00161 3	$\alpha(K) = 0.000353 \ 20; \ \alpha(L) = 5.2 \times 10^{-5} \ 4; \ \alpha(M) = 1.21 \times 10^{-5} \ 8 \\ \alpha(N) = 3.07 \times 10^{-6} \ 20; \ \alpha(O) = 6.3 \times 10^{-7} \ 4; \ \alpha(P) = 7.6 \times 10^{-8} \ 5; \\ \alpha(IPF) = 0.001189 \ 18 \\ Mult: \ A_2 = +0.10 \ 5 \ (1983Ma15)$
3119.48	3/2-	2223.23 10	100	896.28	7/2-	E2	0.00195	B(E2)(W.u.)=7 5 α (K)=0.001308 <i>19</i> ; α (L)=0.000212 <i>3</i> ; α (M)=4.93×10 ⁻⁵ 7 α (N)=1.258×10 ⁻⁵ <i>18</i> ; α (O)=2.56×10 ⁻⁶ <i>4</i> ; α (P)=3.03×10 ⁻⁷ <i>5</i> ; α (IPF)=0.000366 <i>6</i> Mult.: A ₂ =+0.09 <i>5</i> (1983Ma15) in (t,2n γ).
3132.97	11/2+	1524.2 [#] 3	28.3 [#] 25	1608.57	13/2+	[M1]	0.00666	$\alpha(K)=0.00537 \ 8; \ \alpha(L)=0.000887 \ 13; \ \alpha(M)=0.000207 \ 3 \\ \alpha(N)=5.29\times10^{-5} \ 8; \ \alpha(O)=1.084\times10^{-5} \ 16; \ \alpha(P)=1.299\times10^{-6} \ 19; \\ \alpha(IPF)=0.0001243 \ 18$
		3132.96 9	100 2	0.0	9/2-	E1	1.61×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000327 \ 5; \ \alpha(\mathrm{L}) = 4.82 \times 10^{-5} \ 7; \ \alpha(\mathrm{M}) = 1.108 \times 10^{-5} \ 16 \\ &\alpha(\mathrm{N}) = 2.82 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 5.78 \times 10^{-7} \ 8; \ \alpha(\mathrm{P}) = 6.94 \times 10^{-8} \ 10; \\ &\alpha(\mathrm{IPF}) = 0.001218 \ 17 \\ &\mathrm{Mult.:} \ \mathrm{A}_2 = -0.24 \ 4 \ (1983\mathrm{Mal5}) \ \mathrm{in} \ (\mathrm{t}, 2\mathrm{n}\gamma). \end{aligned}$

L

22

					Ado	pted Levels,	Gammas (con	ntinued)
						γ (²⁰⁹ Bi)	(continued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	α^{d}	Comments
3135.77	(15/2)+	394.72 [#] 7	13.6 [#] 4	2741.05	15/2+	M1	0.220	$\alpha(K)=0.180 \ 3; \ \alpha(L)=0.0309 \ 5; \ \alpha(M)=0.00725 \ 11$ $\alpha(N)=0.00185 \ 3; \ \alpha(O)=0.000379 \ 6; \ \alpha(P)=4.52\times10^{-5} \ 7$ Mult.: A ₂ =+0.12 $\ 8 \ (1983Ma15) \ in \ (t,2n\gamma).$
		1527.13 14	100 <i>I</i>	1608.57	13/2+	M1	0.00663	I _γ : Other: 17.5 23 (2008Mi01) in (n,n'γ). $\alpha(K)=0.00535 \ 8; \ \alpha(L)=0.000882 \ I3; \ \alpha(M)=0.000206 \ 3$ $\alpha(N)=5.27\times10^{-5} \ 8; \ \alpha(O)=1.079\times10^{-5} \ I6; \ \alpha(P)=1.292\times10^{-6}$ $I8; \ \alpha(IPF)=0.0001259 \ I8$
3152.83	(9/2)+	3152.80 20	100	0.0	9/2-	E1	1.61×10 ⁻³	Mult.: $A_2 = -0.06\ 2\ (1983Ma15)$ in $(t,2n\gamma)$. $\alpha(K) = 0.000324\ 5;\ \alpha(L) = 4.77 \times 10^{-5}\ 7;\ \alpha(M) = 1.097 \times 10^{-5}\ 16$ $\alpha(N) = 2.79 \times 10^{-6}\ 4;\ \alpha(O) = 5.72 \times 10^{-7}\ 8;\ \alpha(P) = 6.87 \times 10^{-8}\ 10;$ $\alpha(IPF) = 0.001228\ 18$ Mult : $A_2 = +0\ 26\ 6\ (1983Ma15)$ in $(t\ 2n\gamma)$
3154.06	17/2+	167.16 [#] 6	6.59 [#] 19	2986.80	19/2+	M1	2.36	$\alpha(K)=1.92 \ 3; \ \alpha(L)=0.335 \ 5; \ \alpha(M)=0.0789 \ 11 \\ \alpha(N)=0.0202 \ 3; \ \alpha(O)=0.00412 \ 6; \ \alpha(P)=0.000491 \ 7 \\ 10000000000000000000000000000000000$
		413.04 3	100 2	2741.05	15/2+	M1(+E2)	0.195	Mult.: $A_2 = -0.25 \ 10 \ (1983Ma15)$ in (t,2n γ). $\alpha(K) = 0.1594 \ 23; \ \alpha(L) = 0.0273 \ 4; \ \alpha(M) = 0.00641 \ 9$ $\alpha(N) = 0.001640 \ 23; \ \alpha(O) = 0.000335 \ 5; \ \alpha(P) = 3.99 \times 10^{-5} \ 6$ Mult.: $A_2 = 0.22 \ 2 \ (1082Ma15)$ in (t,2m)
3159.33	3/2 ⁽⁺⁾	242.73 5	82 16	2916.62	$(1/2)^+$			Funct: $A_2 = -0.52$ 5 (1985) and (1,2117). E_{γ} : weighted average of 242.73 5 in (t,2117) and 242.7 <i>I</i> in (${}^{3}\text{He},\text{d}\gamma$). I_{γ} : weighted average of 92 <i>I</i> 2 in (t,2117) and 55 <i>20</i> in
		314.2 2	100 10	2845.20	1/2+	(M1)	0.409	('He,dy). $\alpha(K)=0.3345; \alpha(L)=0.05769; \alpha(M)=0.0135219$ $\alpha(N)=0.003465; \alpha(O)=0.00070710; \alpha(P)=8.42\times10^{-5}12$ Mult.: A ₂ =-0.1510 (1983Ma15) in (t,2ny). E _y : weighted average of 314.22 in (t,2ny) and 314.22 in (³ He,dy). I _y : weighted average of 10013 in (t,2ny) and 10010 in
		392.56 10	56 16	2766.66	3/2+			 (³He,dγ). E_γ: weighted average of 392.56 <i>10</i> in (t,2nγ) and 39.5 <i>2</i> in (³He,dγ). I_γ: weighted average of 72 <i>5</i> in (t,2nγ) and 40 <i>10</i> in (³He,dγ).
3169.07	(13/2)+	716.5 <i>2</i> 1560.49 <i>4</i>	90 <i>20</i> 100	2442.92 1608.57	1/2+ 13/2+	M1	0.00630	E_{γ}, I_{γ} : from (³ He, $d\gamma$) only. $\alpha(K) = 0.005067$; $\alpha(L) = 0.00083512$; $\alpha(M) = 0.0001953$ $\alpha(N) = 4.98 \times 10^{-5}7$; $\alpha(O) = 1.020 \times 10^{-5}15$; $\alpha(P) = 1.223 \times 10^{-6}$ $I8$; $\alpha(IPF) = 0.000144921$
3197.60	(1/2 ⁺ ,3/2 ⁺)	352.30 8	70 20	2845.20	1/2+	(M1)	0.300	Mult.: $A_2 = +0.18$ 5 (1985Ma15) in (t,2n γ). $\alpha(K)=0.245$ 4; $\alpha(L)=0.0421$ 6; $\alpha(M)=0.00988$ 14 $\alpha(N)=0.00253$ 4; $\alpha(O)=0.000517$ 8; $\alpha(P)=6.15\times10^{-5}$ 9 E_{γ} : from (t,2n γ). I_{γ} : from (³ He,d γ). Mult.: $A_2=+0.03$ 5 (1983Ma15) in (t,2n γ).

				Ado	pted Lev	els, Gamm	as (continued	<u>1)</u>
					γ ⁽²⁰	⁹ Bi) (conti	nued)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	α^{d}	Comments
3197.60	(1/2+,3/2+)	431.2 2 705.1 2	50 <i>15</i> 100 <i>10</i>	2766.66 2492.86	$3/2^+$ $3/2^+$			E_{γ}, I_{γ} : from (³ He,d γ) only. E_{γ}, I_{γ} : from (³ He,d γ) only.
3211.85	(17/2) ⁺	225.05 [#] 2	100 [#]	2986.80	19/2+	(M1)	1.026	α (K)=0.836 <i>12</i> ; α (L)=0.1451 <i>21</i> ; α (M)=0.0341 <i>5</i> α (N)=0.00873 <i>13</i> ; α (O)=0.001783 <i>25</i> ; α (P)=0.000212 <i>3</i> Mult.: A ₂ =-0.15 <i>4</i> (1983Ma15) in (t,2n γ).
3221.65	5/2+	131.45 [#] 8 265.74 [#] 8	17.1 [#] 9 49.3 [#] 27	3090.16 2955.93	$(7/2)^+$ $(3/2)^+$			_ 、 , , , , , , , , , , , , , , , , , ,
		455.02 [#] 10	100 [#] 4	2766.66	3/2+	(M1)	0.1506	α (K)=0.1231 <i>18</i> ; α (L)=0.0210 <i>3</i> ; α (M)=0.00494 <i>7</i> α (N)=0.001262 <i>18</i> ; α (O)=0.000258 <i>4</i> ; α (P)=3.08×10 ⁻⁵ <i>5</i> Mult.: A ₂ =-0.12 <i>10</i> (1983Ma15) in (t,2n γ).
3269.64	1/2+,3/2+	424.5 [#] 1	100 [#] 10	2845.20	1/2+	(M1)	0.181	α (K)=0.1482 21; α (L)=0.0254 4; α (M)=0.00595 9 α (N)=0.001523 22; α (O)=0.000311 5; α (P)=3.71×10 ⁻⁵ 6 E _{γ} ,I _{γ} : also placed from 3579 level. Component from 3269 established on the basis of $\gamma\gamma$. Mult.: A ₂ =+0.14 3 (1983Ma15) in (t,2n γ).
3311.14	(7/2+,9/2+)	826.5 <i>2</i> 2414.84 <i>4</i>	30 <i>10</i> 100 <i>3</i>	2442.92 896.28	1/2+ 7/2 ⁻			E_{γ}, I_{γ} : from (³ He, d γ) only.
		3310.6 ^{@f} 1	47.6 [@] 16	0.0	9/2-			I_{γ} : from (n,n'γ). The 3310γ is not reported in (t,2nγ); however, there is a peak at this energy in the (t,2nγ) spectrum in 1983Ma15, with $I_{\gamma}/I_{\gamma}(2414\gamma)$ estimated by evaluators as ≈0.5. The energy expected from the level scheme is 3311.15 6.
3354.8 3362.00 3378.16		588.1 [#] 4 2465.70 <i>10</i> 2481.94 <i>18</i>	100 [#] 100 44 <i>3</i>	2766.66 896.28 896.28	3/2 ⁺ 7/2 ⁻ 7/2 ⁻	D		Mult.: A_2 =+0.05 8 (1983Ma15) in (t,2n γ). Mult.: A_2 =-0.01 10 (1983Ma15) in (t,2n γ). I γ : from (n,n' γ). I γ (2481 γ)/I γ (3378 γ)<0.11 is reported in (t,2n γ).
		3378.11 10	100 3	0.0	9/2-	(E1)	1.68×10^{-3}	$\alpha(K)=0.000291 \ 4; \ \alpha(L)=4.28\times10^{-5} \ 6; \ \alpha(M)=9.84\times10^{-6} \ 14$
								α (N)=2.51×10 ⁻⁶ 4; α (O)=5.13×10 ⁻⁷ 8; α (P)=6.17×10 ⁻⁸ 9; α (IPF)=0.001334 19 Mult.: A ₂ =+0.10 5 (1983Ma15) in (t,2n γ).
3393.38	(15/2+)	1784.8 [#] 2	100#	1608.57	13/2+	D		α (K)=0.00359 <i>5</i> ; α (L)=0.000591 <i>9</i> ; α (M)=0.0001379 <i>20</i> ; α (N+)=0.000332 <i>5</i> α (N)=3.53×10 ⁻⁵ <i>5</i> ; α (O)=7.22×10 ⁻⁶ <i>11</i> ; α (P)=8.66×10 ⁻⁷ <i>13</i> ; α (IPF)=0.000289 <i>4</i> E _{γ} : Other: 1785.9 <i>I</i> from (n,n' γ) (1984Pr08). Mult.: A ₂ =-0.21 <i>4</i> (1983Ma15) in (t,2n γ).
3395.00	5/2-,7/2,9/2,11/2-	2498.7 [@] 1 3395.6 ^{@f} 5	100 [@] 25 [@]	896.28 0.0	$7/2^{-}$ 9/2 ⁻			E _w : observed only in 1996De48
3406.21	13/2+	270.4 [#] 1 806.36 15	34.4 [#] 19 52 8	3135.77 2599.91	$(15/2)^+$ $11/2^+$			Ly. 00001700 0117 11 177010000.

 $^{209}_{83}\mathrm{Bi}_{126}$ -24

L

				Ad	lopted Le	vels, Gam	mas (continu	ed)		
γ ⁽²⁰⁹ Bi) (continued)										
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	α^{d}	Comments		
3406.21	13/2+	1797.64 12	100 3	1608.57	13/2+	M1	0.00458	$\alpha(K)=0.00353 \ 5; \ \alpha(L)=0.000580 \ 9; \ \alpha(M)=0.0001354 \ 19$ $\alpha(N)=3.46\times10^{-5} \ 5; \ \alpha(O)=7.09\times10^{-6} \ 10;$ $\alpha(P)=8.50\times10^{-7} \ 12; \ \alpha(IPF)=0.000298 \ 5$ Mult : A ₂ =+0.23 4 (1983Ma15) in (t 2ny)		
3449.7	(7/2+)	2553.4 4	100	896.28	7/2-	D		$\alpha(K)=0.00451 7; \ \alpha(L)=6.68\times10^{-5} 10; \alpha(M)=1.537\times10^{-5} 22; \ \alpha(N+)=0.000896 13 \alpha(N)=3.92\times10^{-6} 6; \ \alpha(O)=8.01\times10^{-7} 12; \alpha(P)=9.61\times10^{-8} 14; \ \alpha(IPF)=0.000891 13 E_{\gamma}: weighted average of 2553.9 6 in (t,2n\gamma), 2552.8 2 in (^{3}He,d\gamma) and 2554.0 2 in (n,n'\gamma).$		
3464.12	11/2+	3464.09 10	100	0.0	9/2-	E1	1.71×10 ⁻³	Mult.: A ₂ =+0.10 <i>17</i> (1983Ma15) in (t,2n γ). α (K)=0.000280 <i>4</i> ; α (L)=4.11 \times 10 ⁻⁵ <i>6</i> ; α (M)=9.46 \times 10 ⁻⁶ <i>14</i> α (N)=2.41 \times 10 ⁻⁶ <i>4</i> ; α (O)=4.93 \times 10 ⁻⁷ <i>7</i> ; α (P)=5.93 \times 10 ⁻⁸ <i>9</i> ; α (IPF)=0.001376 <i>20</i> Mult : A ₂ =-0.28 <i>8</i> (1983Ma15) in (t,2n γ)		
3467.67	19/2+	313.70 [#] 16	27 [#] 3	3154.06	17/2+	M1	0.411	$\alpha(K)=0.335\ 5;\ \alpha(L)=0.0578\ 9;\ \alpha(M)=0.01358\ 20$ $\alpha(N)=0.00347\ 5;\ \alpha(O)=0.000710\ 10;\ \alpha(P)=8.45\times10^{-5}\ 12$ Mult.: from $\gamma(\theta)$ in (t.2n γ) (1983Ma15).		
		480.87 [#] 5	100 [#] 2	2986.80	19/2+	M1	0.1300	$\alpha(K)=0.1063 \ 15; \ \alpha(L)=0.0181 \ 3; \ \alpha(M)=0.00426 \ 6 \\ \alpha(N)=0.001088 \ 16; \ \alpha(O)=0.000222 \ 4; \ \alpha(P)=2.65\times10^{-5} \ 4 \\ Mult.: \ A_2=+0.43 \ 4 \ (1983Ma15) \ in \ (t,2n\gamma).$		
3486.93	(19/2+)	500.12 [#] 5	100#	2986.80	19/2+	(M1)	0.1172	$\alpha(K)=0.0958 \ 14; \ \alpha(L)=0.01633 \ 23; \ \alpha(M)=0.00383 \ 6$ $\alpha(N)=0.000979 \ 14; \ \alpha(O)=0.000200 \ 3; \ \alpha(P)=2.39\times10^{-5} \ 4$ Mult.: A ₂ =+0.42 4 (1983Ma15) in (t.2ny).		
3489.88	(7/2,9/2)	2593.6 2 3489.6 8	100 <i>4</i> 36.2 <i>17</i>	896.28 0.0	7/2 ⁻ 9/2 ⁻					
3502.23	$(15/2^+)$	290.38 [#] 10	100	3211.85	$(17/2)^+$	D		Mult.: $A_2 = -0.13 \ 8 \ (1983Ma15)$ in $(t, 2n\gamma)$.		
3505.28	5/2-,7/2-	921.9 [@] 8	$100^{@} 25$	2583.02	$(7/2)^+$					
		2609.0 [@] 2	39 [@] 3	896.28	7/2-					
3541.60	(5/2 ⁻ ,7/2,9/2)	2645.3 [@] 2	100 [@] 5	896.28	$7/2^{-}$					
		3542.7 [@] f 4	19.2 [@] 18	0.0	9/2-			I _{γ} : reported only in (n,n' γ). Branching is too weak to be seen in the (t,2n γ) spectrum. The energy expected from the level scheme is 3541.61 <i>18</i> .		
3575.08	(5/2,7/2+)	808.0 [@] 10 2678.8 2	$100^{@} 40$ 58 4	2766.66 896.28	3/2 ⁺ 7/2 ⁻					
3579.00	(17/2 ⁺ to 21/2 ⁺)	424.9		3154.06	17/2+			E_{γ} , I_{γ} : also placed from the 3270 level. Total intensity of the doublet is 126 <i>4</i> relative to $I_{\gamma}(592.2)=100$ as upper limit. Component from 3579 is established on the basis of $\gamma\gamma$. The measured energy of the multiplet		

L

				A	dopted I	L <mark>evels, Ga</mark> r	nmas (continu	ued)
					<u>)</u>	v(²⁰⁹ Bi) (co	ontinued)	
E _i (level)	${ m J}^{\pi}_i$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	α^{d}	Comments
								is 424.49 8. E γ is from the level energy difference. A comparison of this value with the measured energy suggests that the dominant component of the 424 multiplet is from a placement other than the 3579 level (evaluators).
3579.00	(17/2 ⁺ to 21/2 ⁺)	592.2 [#] 1	100 [#] 6	2986.80	19/2+	D		$ \begin{aligned} &\alpha(\mathrm{K}) = 0.0614 \; 9; \; \alpha(\mathrm{L}) = 0.01041 \; 15; \; \alpha(\mathrm{M}) = 0.00244 \; 4; \\ &\alpha(\mathrm{N}+) = 0.000767 \; 11 \\ &\alpha(\mathrm{N}) = 0.000624 \; 9; \; \alpha(\mathrm{O}) = 0.0001276 \; 18; \; \alpha(\mathrm{P}) = 1.522 \times 10^{-5} \end{aligned} $
								22 Mult : $A_{0} = -0.36$ /2 (1983Ma15) in (t 2ng)
3590.50		745.3 <mark>&</mark> 2	100 &	2845.20	$1/2^{+}$			$Mutt. Tt_2 = 0.50 T2 (1905Mutt5) III (t,211y).$
3597.14	19/2+	443.15 [#] 12	18.4 [#] 14	3154.06	$17/2^{+}$			
		610.33 [#] 15	100 [#] 3	2986.80	19/2+	M1	0.0693	$\alpha(K)=0.0567 \ 8; \ \alpha(L)=0.00961 \ 14; \ \alpha(M)=0.00225 \ 4 \\ \alpha(N)=0.000576 \ 8; \ \alpha(O)=0.0001177 \ 17; \ \alpha(P)=1.405 \times 10^{-5} \\ 20$
3601.72	(5/2 ⁺ ,7/2 ⁺ ,9/2 ⁺)	2705.42 10	100 3	896.28	7/2-	(E1)	1.47×10 ⁻³	Mult.: A ₂ =+0.49 7 (1983Ma15) in (t,2n γ). α (K)=0.000412 6; α (L)=6.08×10 ⁻⁵ 9; α (M)=1.400×10 ⁻⁵ 20
								α (N)=3.57×10 ⁻⁶ 5; α (O)=7.30×10 ⁻⁷ 11; α (P)=8.76×10 ⁻⁸ 13; α (IPF)=0.000980 14 Mult.: A ₂ =-0.29 8 (1983Ma15) in (t,2n γ).
		3601.7 [@] 6	6.2 [@] 12	0.0	9/2-			I _{γ} : reported only in (n,n' γ). Branching is too weak to be seen in the (t,2n γ) spectrum.
3633.85	1/2-	514.37 ^{&} 2	100 ^{&} <i>30</i>	3119.48	3/2-	[M1]	0.1087	α (K)=0.0889 <i>13</i> ; α (L)=0.01515 <i>22</i> ; α (M)=0.00355 <i>5</i> α (N)=0.000908 <i>13</i> ; α (O)=0.000186 <i>3</i> ; α (P)=2.21×10 ⁻⁵ <i>4</i>
		677.8 ^{&} 2	20 ^{&} 6	2955.93	(3/2)+	[E1]	0.00538	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00446 \ 7; \ \alpha(\mathrm{L}) = 0.000706 \ 10; \ \alpha(\mathrm{M}) = 0.0001640 \ 23 \\ &\alpha(\mathrm{N}) = 4.17 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 8.44 \times 10^{-6} \ 12; \\ &\alpha(\mathrm{P}) = 9.77 \times 10^{-7} \ 14 \end{aligned}$
		788.8 ^{&} 2	3 ^{&} 1	2845.20	1/2+	[E1]	0.00403	α (K)=0.00335 5; α (L)=0.000523 8; α (M)=0.0001214 17 α (N)=3.09×10 ⁻⁵ 5; α (O)=6.26×10 ⁻⁶ 9; α (P)=7.30×10 ⁻⁷ 11
		867.2 ^{&} 2	20 ^{&} 6	2766.66	3/2+	[E1]	0.00338	α (K)=0.00281 4; α (L)=0.000436 7; α (M)=0.0001011 15 α (N)=2.57×10 ⁻⁵ 4; α (O)=5.22×10 ⁻⁶ 8; α (P)=6.11×10 ⁻⁷ 9
		1140.8 ^{&} 2	6 ^{&} 2	2492.86	3/2+	[E1]	0.00207	α (K)=0.001721 24; α (L)=0.000263 4; α (M)=6.07×10 ⁻⁵ 9 α (N)=1.546×10 ⁻⁵ 22; α (O)=3.15×10 ⁻⁶ 5; α (P)=3.71×10 ⁻⁷ 6; α (IPF)=3.26×10 ⁻⁶ 5
		1191.0 ^{&} 2	4 ^{&} 1	2442.92	1/2+	[E1]	0.00193	$\alpha(K)=0.001596\ 23;\ \alpha(L)=0.000243\ 4;\ \alpha(M)=5.62\times10^{-5}\ 8$ $\alpha(N)=1.431\times10^{-5}\ 20;\ \alpha(O)=2.91\times10^{-6}\ 4;$ $\alpha(P)=3\ 44\times10^{-7}\ 5;\ \alpha(IPE)=1\ 251\times10^{-5}\ 19$
3692.14	$(11/2^{-})$	3692.1 2	100	0.0	9/2-			$a(1) = 5.11 \times 10^{-5}, a(11) = 1.251 \times 10^{-17}$

				A	dopted	Levels, Ga	mmas (con	tinued)			
γ ⁽²⁰⁹ Bi) (continued)											
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	α^{d}	Comments			
3703.55	7/2 ⁽⁺⁾	664.8 [#] 2	100 [#] 6	3038.88	5/2+	D		$\alpha(K)=0.0454\ 7;\ \alpha(L)=0.00767\ 11;\ \alpha(M)=0.00180\ 3;$			
								$\alpha(N+)=0.000504.8$ $\alpha(N)=0.000459.7; \ \alpha(O)=9.39\times10^{-5}.14; \ \alpha(P)=1.121\times10^{-5}.16$ Mult.: A ₂ =-0.25.10 (1983Ma15) in (t,2ny).			
		2806.2 [@] 6 3703.4 6	8 [@] 3 89 2	896.28 0.0	7/2 ⁻ 9/2 ⁻			E_{γ},I_{γ} : reported only in $(n,n'\gamma)$, intensity normalized to $I\gamma(3703)$. E_{γ} : from $(t,2n\gamma)$. $E\gamma=3702.3$ <i>I</i> is reported in $(n,n'\gamma)$, but this value is inconsistent with E(level) deduced from the 664.8 γ .			
3717.64	$(7/2^+, 9/2^+, 11/2^+)$	3717.6 [@] 1	100 [@]	0.0	9/2-						
752.2		2855.9 [@] 3	100 [@]	896.28	$7/2^{-}$						
759.0		2862.7 <mark>&</mark> 5	100 <mark>&</mark>	896.28	$7/2^{-}$						
766.9	$(11/2)^+$	3766.9 [@] 3	100 [@]	0.0	9/2-						
772.60		2876.3 ^{&} 2	100 <mark>&</mark>	896.28	$7/2^{-}$						
783.08	(5/2,7/2,9/2)	2886.78 14	100	896.28	7/2-			E_{γ} : weighted average of 2887.3 4 in (t,2n γ), 2886.3 3 in (³ He,d γ) and 2886.8 1 in (n,n' γ).			
800.85	$(7/2^+, 9/2^+)$	2904.8 3	100 5	896.28	7/2-			E_{γ} : weighted average of 2904.5 2 in $(n,n'\gamma)$ and 2905.1 2 in $(^{3}\text{He},d\gamma)$.			
		3800.7 [@] 2	70 [@] 5	0.0	9/2-						
808.29		2199.7 <mark>&</mark> 2	100 <mark>&</mark>	1608.57	$13/2^{+}$						
812.25	23/2+	825.45 [#] 15	100 [#]	2986.80	19/2+	E2	0.01024	α (K)=0.00795 <i>12</i> ; α (L)=0.001739 <i>25</i> ; α (M)=0.000420 <i>6</i> α (N)=0.0001072 <i>15</i> ; α (O)=2.13×10 ⁻⁵ <i>3</i> ; α (P)=2.32×10 ⁻⁶ <i>4</i> Mult: A ₂ =+0.36 7 (1983Ma15) in (t 2ny)			
816.70		2920.4 ^{&} 2	100 <mark>&</mark>	896.28	$7/2^{-}$			Marin 112 (0.00) (1900/maro) in (0,2117).			
817.86	$(11/2^+, 13/2^+)$	$1253^{\textcircled{0}}$ 1	$94^{@}31$	2564.14	$(9/2)^+$						
01/100	(11/2 ,10/2)	$2209.3^{\textcircled{0}}2$	100 [@] 9	1608.57	$(3/2)^{+}$						
849.94		3849.9 [@] 2	100 [@]	0.0	9/2-						
884.3		3884.3 [@] 5	$100^{@}$	0.0	9/2-						
889.5		3889.5 [@] 3	100 [@]	0.0	9/2-						
905.9		3009.6 [@] 3	100 [@] 7	896.28	7/2-						
		3905.9 [@] 7	19 [@] 4	0.0	9/2-						
913.26	$(1/2 \text{ to } 7/2^+)$	1420.4 ^{&} 2	100 <mark>&</mark>	2492.86	$3/2^{+}$						
921.22	$(7/2^+, 9/2^+)$	3024.5 [@] 5	25 [@] 5	896.28	7/2-						
		3921.2 [@] 1	100 [@] 5	0.0	9/2-						
936.74	(13/2 ⁻)	3936.7 [@] 1	100 [@]	0.0	9/2-						
962.27	(7/2,9/2)	3066.1 [@] 3	83 [@] 6	896.28	7/2-						
		3962.1 [@] 3	100 [@] 6	0.0	9/2-						
980.04	(11/2,13/2)-	3980.0 [@] 1	100 [@]	0.0	9/2-						
000.71	9/2+,11/2,13/2-	2391.8 [@] 2	100 [@] 10	1608.57	$13/2^{+}$						

I

			A	dopted L	evels, Gar	nmas (continued)				
γ ⁽²⁰⁹ Bi) (continued)										
J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^b	Comments				
9/2+,11/2,13/2-	4001.0 [@] 2	57 [@] 5	0.0	9/2-						
	4009.3 [@] 4	100 [@]	0.0	9/2-						
	4036.5 [@] 4	100 [@]	0.0	9/2-						
	4046.5 [@] 2	100 [@]	0.0	9/2-						
$(5/2 \text{ to } 13/2)^{-}$	4088.3 [@] 1	100 [@]	0.0	9/2-						
$(1/2^{-}, 3/2^{-})$	1648.5 <mark>&</mark> 4	100 <mark>&</mark>	2442.92	$1/2^+$						
$(9/2^+, 11/2, 13/2^-)$	2488.2 [@] 3	53 [@] 6	1608.57	$13/2^{+}$						
	4096.1 [@] 2	100 [@] 3	0.0	$9/2^{-}$						
$(1/2 \text{ to } 7/2^{-})$	977.1 ^{&} 2	100 <mark>&</mark>	3119.48	3/2-						
× / · · · / - /	4134 [@] 2	100@	0.0	9/2-						
21/2 ⁽⁺⁾	544.85 [#] 10	89 [#] 3	3597.14	19/2+	D	α (K)=0.0764 <i>11</i> ; α (L)=0.01299 <i>19</i> ; α (M)=0.00305 <i>5</i> ; α (N+)=0.000957 <i>14</i> α (N)=0.000779 <i>11</i> ; α (O)=0.0001592 <i>23</i> ; α (P)=1.90×10 ⁻⁵ <i>3</i> Mult.: A ₂ =-0.23 <i>7</i> (1983Ma15) in (t.2ny).				
	654.98 [#] 10	100 [#] 4	3486.93	(19/2 ⁺)	D	$\alpha(\text{K})=0.0471\ 7;\ \alpha(\text{L})=0.00797\ 12;\ \alpha(\text{M})=0.00187\ 3;\ \alpha(\text{N}+)=0.000587\ 9$ $\alpha(\text{N})=0.000478\ 7;\ \alpha(\text{O})=9.77\times10^{-5}\ 14;\ \alpha(\text{P})=1.166\times10^{-5}\ 17$ Mult.: A ₂ =-0.28 8 (1983Ma15) in (t,2ny).				
$(9/2^+, 11/2^-)$	2539.6 [@] 2	100 [@] 10	1608.57	$13/2^{+}$						
	3251.6 [@] 6	$20^{@} 5$	896.28	$7/2^{-}$						
	4148.0 [@] 2	75 [@] 5	0.0	9/2-						
-	3262.8 [@] 5	22 [@] 4	896.28	$7/2^{-}$						
	4158.7 [@] 2	$100^{@} 4$	0.0	9/2-						
$(13/2^{-})$	4160.9 [@] 7	100@	0.0	9/2-						
$(7/2, 9/2, 11/2)^+$	4176.1 [@] 1	100 [@]	0.0	9/2 ⁻						
ST 7 T 7 T 7	4207.5 [@] 4	100 [@]	0.0	9/2 ⁻						
	4222.9 [@] 7	100@	0.0	9/2-						
$(13/2)^{-}$	4233.7 [@] 2	100 [@]	0.0	9/2-						
<pre>< - / = /</pre>	3340.6 ^{&} 3	100	896.28	7/2-						
	4262.9 [@] 2	$100^{@}$	0.0	9/2-						
	$3401.6^{@}$ 3	$100^{@} 9$	896.28	7/2-						
	$4297.6^{@}2$	80 [@] 5	0.0	9/2-						
(+)	4300 7 [@] 1	100@	0.0	9/2-						
	$27267^{@}3$	100@	1608 57	13/2+						
	$4340.7^{@}5$	100@	0.0	9/2-						
(11/2 13/2 15/2)-	$2753.3^{@}2$	100@	1608 57	13/2+						
(11/2,12/2,12/2)	2133.3 2	100	1000.57	15/2						
	$\frac{J_i^{\pi}}{9/2^+,11/2,13/2^-}$ (5/2 to 13/2) ⁻ (1/2 ⁻ ,3/2 ⁻) (9/2 ⁺ ,11/2,13/2 ⁻) (1/2 to 7/2 ⁻) 21/2 ⁽⁺⁾ (9/2 ⁺ ,11/2 ⁻) - (13/2 ⁻) (7/2,9/2,11/2) ⁺ (13/2) ⁻ (⁺) (11/2 13/2 15/2) ⁻	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{y}{2}$ $\frac{J_{i}^{\pi}}{9/2^{+},11/2,13/2^{-}} \xrightarrow{E_{\gamma}^{\dagger}} \frac{E_{\gamma}^{\dagger}}{4001.0^{@} 2} \xrightarrow{57^{@} 5} \frac{57^{@} 5}{0.0} \frac{J_{f}^{\pi}}{9/2^{-}} \frac{J_{f}^{\pi}}{4009.3^{@} 4} \frac{100^{@}}{100^{@}} 0.0 \frac{9/2^{-}}{0.0 9/2^{-}} \frac{4036.5^{@} 4}{4046.5^{@} 2} \frac{100^{@}}{0.0 9/2^{-}} \frac{0.0 9/2^{-}}{4046.5^{@} 2} \frac{100^{@}}{0.0 9/2^{-}} \frac{0.0 9/2^{-}}{0.0 9/2^{-}} \frac{4046.5^{@} 2}{100^{@} 0.0 9/2^{-}} \frac{100^{@} 2}{100^{@} 0.0 9/2^{-}} \frac{100^{@} 2}{100^{@} 2} \frac{100^{@} 2}{100^{@} 3} \frac{100^{9} 2}{0.0 9/2^{-}} \frac{112^{+}}{4096.1^{@} 2} \frac{100^{@} 3}{100^{@} 3} \frac{100^{9} 9/2^{-}}{0.0 9/2^{-}} \frac{1134^{@} 2}{4134^{@} 2} \frac{100^{@} 3}{100^{@} 3} \frac{100^{9} 9/2^{-}}{0.0 9/2^{-}} \frac{4134^{@} 2}{112^{+}} \frac{100^{@} 10}{100^{#} 4} \frac{1608.57}{3486.93} \frac{119/2^{+}}{19/2^{+}} \frac{1132^{+}}{3251.6^{@} 6} \frac{20^{@} 5}{22^{@} 4} \frac{896.28}{896.28} \frac{7/2^{-}}{4148.0^{@} 2} \frac{14138^{@} 2}{100^{@} 100^{@} 4} \frac{100}{0.0} \frac{9/2^{-}}{9/2^{-}} \frac{1132^{+}}{4158.7^{@} 2} \frac{100^{@} 4}{100^{@} 4} \frac{100}{0.0} \frac{9/2^{-}}{9/2^{-}} \frac{1132^{+}}{4128.7^{@} 2} \frac{100^{@} 4}{100^{@} 0.0} \frac{0.9}{9/2^{-}} \frac{113/2^{-}}{4207.5^{@} 4} \frac{100^{@} 0.0}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.5^{@} 4}{4222.9^{@} 7} \frac{100^{@} 0.0}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.5^{@} 4}{3340.6^{@} 3} \frac{100^{@} 9}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.5^{@} 4}{4207.5^{@} 4} \frac{100^{@} 0.0}{100^{9} 2} \frac{9/2^{-}}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.5^{@} 4}{418.0^{@} 2} \frac{100^{@} 0.0}{100^{9} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.5^{@} 4}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.5^{@} 4}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.5^{@} 4}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.5^{@} 4}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.6^{@} 2}{2} \frac{80^{@} 5}{0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.6^{@} 2}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.6^{@} 2}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.6^{@} 2}{2} \frac{80^{@} 5}{0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.5^{@} 3}{2} \frac{80^{@} 5}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{4207.6^{@} 2}{2} \frac{80^{@} 5}{0.0} \frac{9/2^{-}}{9/2^{-}} \frac{100^{@} 0.0}{100^{@} 0.0} \frac{9/2^{-}}{9/2^{-}} \frac{100^{@} 0$	$\frac{J_{i}^{\pi}}{9/2^{+},11/2,13/2^{-}} = \frac{E_{\gamma}^{\dagger}}{4001.0^{@} 2} = \frac{J_{\gamma}^{\dagger}}{57^{@} 5} = \frac{E_{f}}{0.0} = \frac{J_{f}^{\pi}}{9/2^{-}} = \frac{Mult^{b}}{4003.3^{@} 4} = 100^{@}}{0.00} = 0.0 = 9/2^{-} = 4036.5^{@} 4 = 100^{@}}{0.00} = 0.0 = 9/2^{-} = 4046.5^{@} 2 = 100^{@}}{0.0} = 0.0 = 9/2^{-} = 4046.5^{@} 2 = 100^{@}}{0.0} = 0.0 = 9/2^{-} = (1/2^{-},3/2^{-}) = 1648.5^{&} 4 = 100^{@}}{0.0} = 2 = 100^{@} 3} = 0.0 = 9/2^{-} = (1/2^{-},3/2^{-}) = 1648.5^{&} 4 = 100^{@} 3}{0.0} = 9/2^{-} = (1/2^{-},3/2^{-}) = 977.1^{&} 2 = 100^{@} 3}{0.0} = 0.0 = 9/2^{-} = 21/2^{(1/2^{-})} = 977.1^{&} 2 = 100^{@} 3}{0.0} = 0.0 = 9/2^{-} = 21/2^{(+)} = 544.85^{\#} 10 = 89^{\#} 3 = 3597.14 = 19/2^{+} = D = 654.98^{\#} 10 = 100^{\#} 4 = 3486.93 = (19/2^{+}) = D = 654.98^{\#} 10 = 100^{\#} 4 = 3486.93 = (19/2^{+}) = D = 654.98^{\#} 10 = 100^{\#} 4 = 3486.93 = (19/2^{+}) = D = 654.98^{\#} 10 = 100^{\#} 4 = 3486.93 = (19/2^{+}) = D = 654.98^{\#} 10 = 100^{\#} 4 = 3486.93 = (19/2^{+}) = D = 654.98^{\#} 10 = 100^{\#} 4 = 0.0 = 9/2^{-} = 4148.0^{@} 2 = 75^{@} 5 = 0.0 = 9/2^{-} = 4158.7^{@} 2 = 100^{@} 4 = 0.0 = 9/2^{-} = 4158.7^{@} 2 = 100^{@} 4 = 0.0 = 9/2^{-} = 4158.7^{@} 2 = 100^{@} 4 = 0.0 = 9/2^{-} = 4222.9^{@} 7 = 100^{@} 4 = 0.0 = 9/2^{-} = 3340.6^{&} 3 = 100^{@} 8 = 96.28 = 7/2^{-} = 4262.9^{@} 2 = 100^{@} = 0.0 = 9/2^{-} = 3340.6^{&} 3 = 100^{@} 8 = 96.28 = 7/2^{-} = 4262.9^{@} 2 = 100^{@} 0 = 0.0 = 9/2^{-} = 3401.6^{@} 3 = 100^{@} 9 = 896.28 = 7/2^{-} = 4262.9^{@} 2 = 100^{@} = 0.0 = 9/2^{-} = 3401.6^{@} 3 = 100^{@} 9 = 896.28 = 7/2^{-} = 4262.9^{@} 2 = 100^{@} 0 = 0.0 = 9/2^{-} = 3401.6^{@} 3 = 100^{@} 9 = 896.28 = 7/2^{-} = 4262.9^{@} 2 = 100^{@} 0 = 0.0 = 9/2^{-} = 3401.6^{@} 3 = 100^{@} 9 = 896.28 = 7/2^{-} = 4262.9^{@} 2 = 100^{@} 0 = 0.0 = 9/2^{-} = 3401.6^{@} 3 = 100^{@} 9 = 896.28 = 7/2^{-} = 4262.9^{@} 2 = 100^{@} 0 = 0.0 = 9/2^{-} = 3401.6^{@} 3 = 100^{@} 9 = 896.28 = 7/2^{-} = 4262.9^{@} 2 = 100^{@} 0 = 0.0 = 9/2^{-} = 3401.6^{@} 3 = 100^{@} 9 = 1608.57 = 13/2^{+} = 4340.7^{@} 5 = 100^{@} 0 = 0.0 = 9/2^{-} = 10/2^{-} = 7/2^{-} = 7/2^{-} = 7$				

 ${}^{209}_{83}{
m Bi}_{126}$ -28

From ENSDF

 $^{209}_{83}{
m Bi}_{126}$ -28

Adopted Levels, Gammas (continued)												
	γ ⁽²⁰⁹ Bi) (continued)											
E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^b	Comments						
4381.31		3485.0 [@] 2	100 [@]	896.28 7/2-								
4388.15		3491.9 [@] 2	100 [@] 8	896.28 7/2-								
		4387.7 [@] 5	22 [@] 3	0.0 9/2-								
4397.85		4397.8 [@] 2	100@	0.0 9/2-								
4409.05		4409.0 [@] 2	100 [@]	0.0 9/2-								
4415.33	1/2-	1295.9 ^{&} 2	100 ^{&} <i>30</i>	3119.48 3/2-								
		1922.4 <mark>&</mark> 2	3 ^{&} 1	2492.86 3/2+								
4426.7		3530.4 ^{&} 3	100 ^{&}	896.28 7/2-								
4441.7	$(7/2)^{-}$	3542.6 ^{&} 3	&	896.28 7/2-								
		4439.1 ^{&} 3	&	0.0 9/2-		E_{γ} : Other: 4441.6 keV from ²⁰⁸ Pb(³ He,d γ).						
4471.0	$(9/2^+, 11/2, 13/2^-)$	2862.5 [@] 3	100 [@] 6	1608.57 13/2+								
		4470.5 [@] 6	19.4 [@] 22	0.0 9/2-								
4478.2		3581.9 ^{&} 3	100	896.28 7/2-								
4484.79		2876.2 [@] 1	100 [@]	1608.57 13/2+								
4506.85		4506.8 [@] 2	100	0.0 9/2-								
4515.23	$(9/2^+, 11/2, 13/2^-)$	2906.6 [@] 1	100 [@] 3	1608.57 13/2+								
		4515.3 [@] 2	20.0 [@] 13	0.0 9/2-								
4516.5		3620.2 × 3	100	896.28 7/2-								
4588.3		3692.1 × 3	ð.	896.28 7/2-								
		4587.8 ^{&} 6	100	$0.0 9/2^{-}$								
4602.6	$(5/2^-, 7/2, 9/2^+)$	4602.5 ^{⁽⁰⁾} 13	100	$0.0 9/2^{-}$								
4646.1		4646.0 ^{^w} 3	100	0.0 9/2-								
4682.0		3785.4 ^{^w} 16	100 32	896.28 7/2-								
		4682.0 ⁶ 9	60 ^w 12	$0.0 9/2^{-}$								
4739.62		3843.3°° 2	100 [°]	896.28 7/2-								
4750.79		3854.4 ^w 2	100 ^w 7	896.28 7/2-								
		4750.9 ^w 3	33.3 ^w 20	0.0 9/2-	(T) (
4755.76	(7/2,9/2,11/2)	4755.7°° 2	100	0.0 9/2-	(D) ^c							
4762.3		3866.0 = 3	100 ° 10	896.28 7/2-								
1706 22		4/62.2 5	45 5	$0.0 9/2^{-1}$								
4786.32	(0/0+ 11/0 10/0-)	$3890.0^{\circ} 2$	100	896.28 7/2								
4/89.8	$(9/2^+,11/2,13/2^-)$	5181.1° 5	$100 \ 20$	1608.57 13/2*								
1706 1		$4/90.0 \circ 0$	100 8	0.0 9/2								
4/96.1	(1/2,9/2,11/2)	$4/96.0 \frac{3}{2}$	100	$0.0 \ 9/2^{-1}$	(D)							
4830.3	(7/2,9/2,11/2)	4830.2 3	100 -	0.0 9/2	(D) ^C							

 $^{209}_{83}\mathrm{Bi}_{126}$ -29

From ENSDF

 $^{209}_{83}\mathrm{Bi}_{126}$ -29

				Ad	opted Levels,	Gammas (continue
					<u>γ(²⁰⁹Bi</u>) (continued)
E _i (level)	J^π_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^b
4837.6		3941.4 [@] 6	70 [@] 11	896.28	7/2-	
		4837.5 [@] 3	100 [@] 7	0.0	9/2-	
4853.46		4853.4 [@] 2	$100^{@}$	0.0	9/2-	
4879.47		3983.1 [@] 2	100 [@] 9	896.28	7/2-	
		4879.6 [@] 4	27 [@] 3	0.0	9/2-	
4904.2		4007.9 ^{&} 3	100 <mark>&</mark>	896.28	7/2-	
4948.3		4051.8 [@] 5	100 [@] 8	896.28	7/2-	
		4948.6 [@] 8	40 [@] 5	0.0	9/2-	
4967.6		4967.5 [@] 15	100 [@]	0.0	9/2-	
4996.2	$(13/2)^{-}$	4996.1 [@] 3	100 [@]	0.0	9/2-	
5054.0		4157.7 ^{&} 4	100 <mark>&</mark>	896.28	7/2-	
5056.7	$(11/2)^+$	5056.6 [@] 6	$100^{@}$	0.0	9/2-	
5152.2		4255.9 <mark>&</mark> <i>3</i>	100 <mark>&</mark>	896.28	7/2-	
5167.3	$(9/2^+, 11/2, 13/2^-)$	3558.5 [@] 3	100 [@] 8	1608.57	$13/2^{+}$	
		5167.6 [@] 5	25.6 [@] 22	0.0	9/2-	
5182.7	5/2-,7/2-	5182.6 [@] 7	100 [@]	0.0	9/2-	
5190.7		4294.4 <mark>&</mark> 4	100 ^{&}	896.28	7/2-	
5235.1	(7/2,9/2,11/2)	5235.0 [@] 3	100 [@]	0.0	9/2-	(D) ^{<i>C</i>}
5281.9	(7/2,9/2,11/2)	5281.8 [@] 11	100 [@]	0.0	9/2-	(D) ^{<i>C</i>}
5292.7		2095.1 ^{&} 3	100 ^{&}	3197.60	$(1/2^+, 3/2^+)$	
		2525.6 <mark>&</mark> 5	100 <mark>&</mark>	2766.66	3/2+	
5293.4	(7/2,9/2,11/2)	5293.3 [@] 6	100 [@]	0.0	9/2-	(D) ^{<i>C</i>}
5312.6	(7/2,9/2,11/2)	5312.5 [@] 13	100 [@]	0.0	9/2-	(D) ^{<i>C</i>}
5354.0	(7/2,9/2,11/2)	5353.9 [@] 4	100 [@]	0.0	9/2-	(D) ^{<i>C</i>}
5369.8	$(1/2, 3/2, 5/2^+)$	2926.9 <mark>&</mark> 4	100 ^{&}	2442.92	$1/2^{+}$	
5404.5	$(11/2)^+$	5404.4 [@] 6	100 [@]	0.0	9/2-	
5411.2		5411.1 [@] 6	100 [@]	0.0	9/2-	
5424.62	$(9/2^+, 11/2)$	3815.9 [@] 4	100 [@] 12	1608.57	$13/2^{+}$	
		5424.6 [@] 3	80 [@] 4	0.0	9/2-	
5440.2	(7/2,9/2,11/2)	5440.1 [@] 10	100 [@]	0.0	9/2-	
5464.6	$11/2^+$	5464.5 [@] 8	100 [@]	0.0	9/2-	
5484.4	(7/2,9/2,11/2)	5484.3 [@] 5	100 [@]	0.0	9/2-	(D) ^C
5498.0	(7/2,9/2,11/2)	5497.9 [@] 10	100 [@]	0.0	9/2-	(D) ^C
5510.53	$(9/2^+, 11/2, 13/2^-)$	3902.0 [@] 4	100 [@] 13	1608.57	$13/2^{+}$	
		5510.4 [@] 3	70 [@] 4	0.0	9/2-	

L

					Ado	pted Level	ls, Gamma	s (continued)			
γ ⁽²⁰⁹ Bi) (continued)											
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. ^b	α^{d}	Comments			
5523.5		4627.0 [@] 5	100 [@] 12	896.28	7/2-						
		5523.9 [@] 9	44 [@] 8	0.0	9/2-						
5538.4	(7/2,9/2,11/2)	4641.8 [@] 8	100 [@] 18	896.28	$7/2^{-}$						
		5538.7 [@] 10	59 [@] 12	0.0	9/2-						
5559.6	(7/2,9/2,11/2)	4663.0 [@] 7	100 [@] 8	896.28	$7/2^{-}$						
		5559.8 [@] 8	62 [@] 8	0.0	9/2-						
5563.4		3070.5 ^{&} 6	100	2492.86	$3/2^{+}$						
5570.6	$(11/2^+)$	5570.5 [@] 7	100	0.0	9/2-						
5589.2	$(11/2^+)$	5589.1 [@] 7	100	0.0	9/2-						
5609	11/2-	5609 ^{‡a} 5	100#	0.0	9/2-	M1	0.00252	B(M1)(W.u.)=0.26 6 $\alpha(K)=0.000201 \ 3; \ \alpha(L)=3.20\times10^{-5} \ 5; \ \alpha(M)=7.44\times10^{-6} \ 11$ $\alpha(N)=1.90\times10^{-6} \ 3; \ \alpha(O)=3.90\times10^{-7} \ 6; \ \alpha(P)=4.69\times10^{-8} \ 7; \ \alpha(IPF)=0.00228 \ 4$ Mult.: from $\gamma(\theta)$ and $\gamma(pol)$ in (γ,γ') .			
5609.8		4713.5 [@] 3	100 [@]	896.28	7/2-						
5652.6	$(11/2)^+$	5652.5 [@] 8	100 [@]	0.0	9/2-						
5662.1	(7/2,9/2,11/2)	5662 ^{‡a} 2	#	0.0	9/2-						
5668.3		4772.0 ^{&} 3	100 <mark>&</mark>	896.28	7/2-						
5788.7		4892.4 ^{&} 4	100 <mark>&</mark>	896.28	7/2-						
5925.1	$(11/2)^+$	5925.0 [@] 17	100 [@]	0.0	9/2-						
6301.1		5404.7 <mark>&</mark> 4	100 <mark>&</mark>	896.28	7/2-						
6382.0		5485.6 ^{&} 6	100 <mark>&</mark>	896.28	$7/2^{-}$						
6392		6392 ^{‡a} 8	100 [#]	0.0	9/2-						
6556.1		6556 ^{‡a}	100#	0.0	9/2-						
6712.2		5815.8 ^{&} 4	100 <mark>&</mark>	896.28	$7/2^{-}$						
6900.5		6004.1 ^{&} 7	100 <mark>&</mark>	896.28	$7/2^{-}$						
6911?	(7/2,9/2,11/2)	6911 ^{‡af} 4	100#	0.0	9/2-						
6944.8	(7/2,9/2,11/2)	6944.7 [@] 21	100 [@]	0.0	9/2-						
6983	(7/2,9/2,11/2)	6983 ^{‡a} 4	100#	0.0	9/2-						
7106?	(7/2,9/2,11/2)	7106 ^{‡af} 4	100#	0.0	9/2-						
7168.1	9/2+	7168 ^{‡a}	100 [#]	0.0	9/2-	E1		B(E1)(W.u.)=0.00093 5 α (IPF)=0.00256 4 Mult.: from $\gamma(\theta)$ and γ (pol) in (γ, γ') , $\delta < 0.05$ if J(7168)=9/2 and -0.1 if J(7168)=11/2.			
7171	(7/2,9/2,11/2)	7171 ^{‡a} 4	100 [#]	0.0	9/2-						
7176.6	(7/2,9/2,11/2)	7176.5 [@] 10	100 [@]	0.0	9/2-						

 $^{209}_{83}\mathrm{Bi}_{126}$ -31

I

From ENSDF

 $^{209}_{83}\mathrm{Bi}_{126}$ -31

					Adopt	ed Levels, Gammas (continued)
						$\gamma(^{209}\text{Bi})$ (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^b	Comments
7202	11/2+,13/2+	$7202^{\ddagger af} 5$	100 [#]	0.0 9/2-		
7243.9	(7/2,9/2,11/2)	7243.8 [@] 13	100 [@]	0.0 9/2-		
7264	(7/2,9/2,11/2)	7264 ^{‡a} 4	100 [#]	0.0 9/2-		
7279.1		7279.0 ^{‡a}	100 [#]	0.0 9/2-		
7279+x		6382 ^{‡a}	#			
		7279 ^{‡a}	#			
7287	(7/2,9/2,11/2)	7287 ^{‡a} 4	100 [#]	0.0 9/2-		
7360	(7/2,9/2,11/2)	7360 ^{‡a} 4	100 [#]	0.0 9/2-		
7416.1	9/2-	7416 ^{‡a}	100 [#]	0.0 9/2-	(D)	Mult.: A ₂ =+0.20 3 (1969Ra09) in (γ, γ') .
7632.1	$(9/2^+)$	7632 ^{‡a}	100 [#]	$0.0 \ 9/2^{-}$	(D)	Mult.: $A_2 = +0.24 \ 4 \ (1974 Wo05)$ in (γ, γ') .

[†] Weighted averages of values from $(t,2n\gamma)$ and $(n,n'\gamma)$, unless otherwise noted. Energies without uncertainties are from level-energy differences.

[‡] Weighted average of values from $(t,2n\gamma)$, $(n,n'\gamma)$ and Coulomb excitation.

[#] From $(t, 2n\gamma)$.

[@] From $(n,n'\gamma)$.

[&] From (³He,d γ).

32

^{*a*} From (γ, γ') .

^b From $\gamma(\theta)$ in (t,2n γ) (1983Ma15), unless otherwise noted.

^c Excitation in (γ, γ') is probably D (or D+Q) based on the measured values of $g\Gamma(\gamma_0)^2/\Gamma$, which leads to unexpected large B(E2)(W.u.)>10 and rules out the possibilities of pure quadrupole transitions.

^d Additional information 3.

^{*e*} If No value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

f Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

From ENSDF

Intensities: Relative photon branching from each level

²⁰⁹₈₃Bi₁₂₆