²¹⁰Bi(d,t): target=9⁻ isomer 1980Cl05

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013							

Target ^{210m}Bi $J^{\pi}=9^{-}$.

1980Cl05: E=17 MeV deuteron beam was produced from the Yale MP tandem accelerator. Target was 1.39 mg 99% enriched 210m Bi on a carbon backing. Tritons were momentum analyzed with a multigap spectrograph and detected on Ilford nuclear emulsion plates, FWHM \approx 15-30. Measured $\sigma(\theta)$. Deduced levels, L, J-transfer, spectroscopic factors from DWBA analysis. Other: 1960Vl01.

²⁰⁹Bi Levels

The authors of 1980Cl05 suggest that the observed levels are two-particle one-hole states resulting from the coupling of the $^{210}\text{Bi}(9^-)$ target, with dominant configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2})^{-1}$, with neutron hole states in ^{207}Pb . They show that the centroids and summed spectroscopic factors for the levels resulting from probable $p_{1/2}$, $p_{3/2}$, $f_{5/2}$, and $f_{7/2}$ transfers agree well with the energies and spectroscopic factors for the corresponding single particle states found in $^{208}\text{Pb}(d,t)$.

E(level) [†]	L [@]	$C^2S^{\boldsymbol{b}}$	E(level) [†]	L [@]	C^2S^{b}	E(level) [†]	L [@]	C ² S ^b	E(level) [†]	L [@]	C^2S^{b}
2741 5	1	0.14	3735 10	3 &	0.94	4065 10	1 ^{<i>a</i>}	0.92 ^a	5058 10	3	0.15
2987 [‡]	1	0.98	3764 10	1 &	0.25	4084 10	1 a	0.92 ^a	5256 10	3	0.32
3135 5			3818 10	3	1.58	4122 10	1 ^{<i>a</i>}	0.92 ^a	5367 10	3	0.41
3154 5	1	0.61	3912 10	1	0.71	4225 10	1	0.14	5402 10	3	0.56
3212 5	1	0.48	3960 10			4263 10	1	0.21	5464 10	3	0.83
3469 [#] 5	3	0.27	4002 10	1	0.35	4349 10	1	0.97	5657 10	3	0.43
3597 5	1,3	0.17,1.95	4021 10			4417 10	1	0.14	5924 10	3	0.28

[†] Relative to E=2987 taken as the reference level energy (1980Cl05).

[‡] Rounded-off value from Adopted Levels.

[#] Authors of 1980Cl05 assign level as possible doublet on the basis of their assignment of the level as a member of the configuration= $v(2f_{5/2})^{-1} \otimes 9^{-}$ multiplet, and the consequent disagreement with probable $J^{\pi} = (11/2^{+})$ for E=3466 deduced by 1974Cl06 in (p,p'); however, in (t,2n γ), 1983Ma15 report a level at 3467 with J^{π} probably 19/2⁺, as well as one at 3464 with J^{π} probably 11/2⁺.

[@] From comparison of the experimental cross sections with DWBA predictions (1980Cl05).

& L=1,3 for the 3735+3764 doublet, but larger σ at forward angles for the 3764 peak allows authors to assign L=1 to this component, and thus L=3 for the 3735 peak.

^{*a*} L=1 and C²S=0.92 for the 4065+4084+4122 multiplet.

^b Defined by $d\sigma/d\Omega_{exp}=N\times C^2S/(2J+1)\times d\sigma/d\Omega_{DWBA}$, with N=3.33 (1980Cl05) and where J is the total angular momentum of the transferred neutron. L=1 and L=3 are taken as corresponding to $p_{3/2}$ and $f_{7/2}$, respectively, except for the 2987, 3154, and 3212 levels which are taken as $p_{1/2}$, and the levels with L=3 below 5 MeV which are taken as $f_{5/2}$.