208 Pb(t,2n γ) 1983Ma15

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Chen $^{\#}$ and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013

1983Ma15: E=11-16 MeV triton beams were produced from the 3-state Van de Graaff facility of the Los Alamos National Laboratory. Targets were enriched metallic Pb (>98.5%). γ-rays were detected by a pure Ge low-energy photon (LEPS) detector (FWHM=0.5 keV at 100 keV), a pure Ge planar detector (FWHM=1 keV at 800 keV) and a 50 cm³ coaxial Ge(Li) detector (FWHM=2.5 keV at 1.5 MeV). Measured Eγ, Iγ, γ(θ), γγ-coin, γγ-coin. Deduced levels, J^π, branchings. Also see 1983Be28.

²⁰⁹ Bi	Levels
-------------------	--------

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	9/2-	$configuration = \pi (1h_{9/2})^{+1}$.
896.32 6	7/2-	$configuration = \pi (2f_{7/2})^{+1}$.
1608.54 6	13/2+	configuration= $\pi(1i_{13/2})^{+1}$.
2442.83 6	$1/2^{+}$	J^{π} : 1546 $\gamma(\theta)$ is isotropic.
		$configuration = \pi (3s_{1/2})^{-1}$.
2492.77# 6	3/2+	
2564.32 [#] 20	9/2+	
2582.84 [#] 11	7/2+	
2599.78 [#] 14	$11/2^+$	
2600.87 [#] 6	$13/2^{+}$	
2617.25 [#] 7	5/2+	
2741.00 [#] 6	15/2+	
2766.57 [@] 6	3/2+	
2826.18 15	5/2-	configuration= $\pi (2f_{5/2})^{+1}$.
2845.10 [@] 7	$1/2^{+}$	J^{π} : 402 $\gamma(\theta)$ to 1/2 ⁺ is isotropic (1983Ma15).
2916.53 <mark>&</mark> 8	$1/2^{+}$	
2955.85 8	3/2+	 J^π: γ-branching ratio to 3/2⁺ and 5/2⁺ members of the configuration=π(1h_{9/2})⁺¹⊗3⁻ septuplet agrees with the calculated value for assignment as a 3/2⁺ component (fragmented) of the same multiplet (1983Ma15). configuration=π(2d_{3/2})⁻¹+π(1h_{9/2})⁺¹⊗3⁻ (1983Ma15).
2986.73 [@] 6	$19/2^{+}$	
3038.79 [@] 10	5/2+	
3090.24 [@] 10	7/2+	
3119.56 12	3/2-	configuration= $\pi(3p_{3/2})^{+1}$.
3132.77 [@] 17	11/2+	
3135.65 [@] 7	15/2+	
3153.23 [@] 20	9/2+	
3154.02 [@] 6	17/2+	
3159.23 ^{&} 8	3/2+	
3169.02 [@] 6	$13/2^{+}$	
3197.40 11	$(1/2^+, 3/2^+, 5/2^+)$	
3211.78 ^{&} 6	17/2+	
3221.63 ^{&} 9	5/2+	
3269.59 11	$(1/2^+, 3/2^+, 5/2^+)$	
5511.19 7 3354 7 4	$(1/2^{+})$ $(3/2^{+})$	
3362.0.4	(3/2) $(5/2^+ 7/2^+ 9/2^+)$	
3378 2 8 3	9/2+	
3393.34 21	$(15/2^+)$	

²⁰⁸**Pb(t,2n** γ) 1983Ma15 (continued)

²⁰⁹Bi Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
3406.06 ^{&} 11	13/2+	
3450.2 ^{&} 6	7/2+	
3464.0 ^{&} 3	11/2+	
3467.61 8	19/2+	
3486.87 8	19/2+	probable configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(1i_{11/2}^{+1} 3p_{1/2}^{-1})$
3490.2 <i>3</i>	$(7/2^+, 9/2^+)$	-111/2
3502.16 ^{&} 12	15/2+	
3541.6 <i>3</i>	$(5/2^+, 7/2^+, 9/2^+)$	
3575.7 4		
3578.68 9	21/2+	probable configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(1i_{11/2}^{+1} 3p_{1/2}^{-1})$
3597.09 10	19/2+	probable configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2}^{+1}2f_{5/2}^{-1})$
3601.84 21	$(9/2^{+})$	
3693.0 5	$(11/2^{-})$	
3703.58 21	$(7/2^+)$	
3719.0 20	$(7/2^+, 9/2^+, 11/2^+)$	Additional information 1.
3783.6 4	$(5/2^+, 7/2^+, 9/2^+)$	
3812.18 16	23/2+	probable configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2})^{+1} 2f_{5/2}^{-1}$
3853.0 20	$(1/2^+, 9/2^+, 11/2^+)$	
39/9.5 0	$(1/2^+, 9/2^+, 11/2^+)$	
4141.89 11	21/2	

[†] From a least-squares fit to γ -ray energies.

¹ From a least-squares in to γ -ray energies. [‡] From 1983Ma15. [#] Member of the $\pi(1h_{9/2})^{+1} \otimes \pi^{-1}$. [@] configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2}^{+1}3p_{1/2}^{-1})_{5^{-1}}$. [&] configuration= $\pi(1h_{9/2})^{+1} \otimes \nu(2g_{9/2}^{+1}3p_{1/2}^{-1})_{4^{-1}}$.

$\gamma(^{209}\text{Bi})$

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α [@]	Comments
(49.9)	≈1.73	2492.77	3/2+	2442.83	1/2+	[M1]	14.46	I _{γ} : from 1983MA15.Transition not seen directly. Energy from level energy difference and total intensity inferred from $\gamma\gamma$ to be $\approx 20\%$ of the branching from the 2403 level
78.60 10	≈4	2845.10	1/2+	2766.57	3/2+			I_{γ} : seen only in the low-energy photon detector. I γ is $\approx 15\%$ of the 402 γ (1983Ma15).
110.67 15	0.70 7	2955.85	3/2+	2845.10	$1/2^{+}$			$A_2 = +0.4 \ 3.$
124.48 5	1.73 7	2617.25	5/2+	2492.77	$3/2^{+}$	M1		Mult.: $A_2 = -0.05 5$.
131.45 8	1.28 7	3221.63	5/2+	3090.24	7/2+			$A_2 = +0.02 \ 15.$
140.13 <i>1</i>	38.5 6	2741.00	$15/2^{+}$	2600.87	$13/2^{+}$	M1		Mult.: $A_2 = -0.19 4$.
149.3 <i>1</i>	3.8 2	2766.57	3/2+	2617.25	5/2+			$A_2 = -0.08 \ 8.$
149.98 5	7.1 2	2916.53	$1/2^{+}$	2766.57	$3/2^{+}$			$A_2 = +0.04 \ 8.$
167.16 6	3.4 1	3154.02	$17/2^{+}$	2986.73	$19/2^{+}$	M1		Mult.: $A_2 = -0.25 \ 10.$
225.05 2	34.6 5	3211.78	17/2+	2986.73	$19/2^{+}$			$A_2 = -0.15 \ 4.$
242.73 5	5.6 [#] 7	3159.23	3/2+	2916.53	$1/2^{+}$			
245.73 2	266 5	2986.73	19/2+	2741.00	$15/2^+$	E2		Mult.: $A_2 = +0.31$ 5.
265.74 8	3.7 2	3221.63	5/2+	2955.85	$3/2^{+}$			-
270.4 1	5.5 3	3406.06	$13/2^{+}$	3135.65	$15/2^+$			$A_2 = -0.07$ 7.
272.2 1	8.7 2	3038.79	5/2+	2766.57	$3/2^{+}$			$A_2 = -0.02 \ 4.$
273.80 <i>3</i>	19.4 <i>3</i>	2766.57	3/2+	2492.77	$3/2^{+}$			$A_2 = +0.02 \ 4.$
290.38 10	5.7 <i>3</i>	3502.16	15/2+	3211.78	$17/2^{+}$	M1		Mult.: $A_2 = -0.13 \ 8.$
313.70 16	7.8 8	3467.61	19/2+	3154.02	$17/2^{+}$	M1		
314.2 2	6.1 8	3159.23	3/2+	2845.10	$1/2^{+}$	M1		Mult.: $A_2 = -0.15 \ 10$.
323.74 2	61 <i>1</i>	2766.57	3/2+	2442.83	$1/2^{+}$	M1		Mult.: $A_2 = -0.08 \ 4$.
338.65 10	2.6 3	2955.85	3/2+	2617.25	5/2+			$A_2 = -0.1 \ 2.$
352.30 8	7.0 <i>3</i>	3197.40	$(1/2^+, 3/2^+, 5/2^+)$	2845.10	$1/2^{+}$			$A_2 = +0.03 5.$
392.56 10	4.4 <i>3</i>	3159.23	3/2+	2766.57	$3/2^{+}$			$A_2 = +0.07 \ 10.$
394.72 7	11.8 <i>3</i>	3135.65	$15/2^{+}$	2741.00	$15/2^{+}$	M1		Mult.: $A_2 = +0.12 \ 8.$
402.27 3	26.8 4	2845.10	$1/2^{+}$	2442.83	$1/2^{+}$			
413.04 3	51.6 8	3154.02	17/2+	2741.00	$15/2^{+}$	M1+E2		Mult.: $A_2 = -0.32 \ 3$.
424.49 ^{&} 8	13.2 4	3269.59	$(1/2^+, 3/2^+, 5/2^+)$	2845.10	$1/2^{+}$			$A_2 = +0.14 \ 3.$
424.49 ^{&} 8	13.2 ^{&} 4	3578.68	21/2+	3154.02	$17/2^{+}$			
443.15 12	4.1 <i>3</i>	3597.09	19/2+	3154.02	$17/2^{+}$			$A_2 = -0.1 \ 2.$
455.02 10	7.5 3	3221.63	5/2+	2766.57	$3/2^{+}$			$A_2 = -0.12 \ 10.$
463.04 8	16.6 4	2955.85	3/2+	2492.77	$3/2^{+}$			$A_2 = 0.00 5.$
480.87 5	28.6 6	3467.61	19/2+	2986.73	$19/2^{+}$	M1		Mult.: $A_2 = +0.43 \ 4$.
500.12 5	35.3 7	3486.87	19/2+	2986.73	$19/2^{+}$	M1		Mult.: $A_2 = +0.42 \ 4$.
(513.0)	<0.8	2955.85	3/2+	2442.83	1/2+			E_{γ} : not seen. E_{γ} is from the level energy difference. The authors quote an upper limit of 3% for the branching to the 2443 level (value given in text in 1983Ma15).
544.85 10	15.9 5	4141.89	$21/2^{+}$	3597.09	$19/2^{+}$	M1		Mult.: $A_2 = -0.23$ 7.
588.1 4	10.3 6	3354.7	$(3/2^+)$	2766.57	$3/2^{+}$			$A_2 = +0.05 8.$
592.2 1	10.5 6	3578.68	21/2+	2986.73	19/2+	M1		Mult.: $A_2 = -0.36$ 12.

ω

From ENSDF

 $\gamma(^{209}\text{Bi})$ (continued)

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ	Comments
610.33 15	22.3 7	3597.09	19/2+	2986.73	$19/2^{+}$	M1		Mult.: $A_2 = +0.49$ 7.
654.98 10	17.8 7	4141.89	$21/2^+$	3486.87	$19/2^{+}$	M1		Mult.: $A_2 = -0.28 \ 8.$
664.8 2	9.4 6	3703.58	$(7/2^+)$	3038.79	$5/2^{+}$	M1		Mult.: $A_2 = -0.25 \ 10.$
806 36 15	78 [#] 9	3406.06	13/2+	2599 78	$11/2^{+}$			-
825.45 15	13.8 7	3812.18	$23/2^+$	2986.73	$19/2^+$	E2		Mult: $A_2 = +0.36.7$
896 30 7	1000 10	896.32	7/2-	0	9/2-	M1+E2		$A_2 = +0.04.2$
991.2	<4	2599.78	$11/2^+$	1608.54	$13/2^+$			E_{α} : from level energy difference.
//=	••	200000		1000.010	10/2			I_{γ} : transition not observed. Intensity is limit based on possible
								component in the 992.34 peak.
992.34 2	225 3	2600.87	$13/2^{+}$	1608.54	$13/2^{+}$	M1+E2		Mult.: $A_2 = +0.27$ 1.
1132.45 2	180 2	2741.00	$15/2^{+}$	1608.54	$13/2^{+}$	M1+E2	+0.05	Mult., δ : $A_2 = -0.12 I$.
1524.1.3	10.2 [#] 9	3132.77	$11/2^{+}$	1608.54	$13/2^{+}$			$A_2 = -0.04 \ 10.$
1527.02 8	87 1	3135.65	$15/2^+$	1608.54	$13/2^+$	M1		Mult.: $A_2 = -0.06 2$.
1546.47 5	196.2	2442.83	$1/2^+$	896.32	$7/2^{-}$	E3		Mult.: $\gamma(\theta)$ to $1/2^-$ is isotropic.
1560.48 2	44 5	3169.02	$13/2^{+}$	1608.54	$13/2^{+}$	M1		Mult.: $A_2 = +0.185$.
1608.48 8	1000 6	1608.54	$13/2^{+}$	0	$9/2^{-}$	M2+E3		$A_2 = +0.42$ 1.
1686.52 10	46.8 8	2582.84	7/2+	896.32	$7/2^{-}$	E1+M2		Mult.: $A_2 = +0.08 \ 2.$
1720.95 10	33 [#] 8	2617.25	5/2+	896.32	$7/2^{-}$			$A_2 = -0.04 4$.
1784.8 2	16.2 5	3393.34	$(15/2^+)$	1608.54	$13/2^+$	M1		Mult.: $A_2 = -0.21 4$.
1797.4 2	16.0 5	3406.06	13/2+	1608.54	$13/2^{+}$	M1		Mult.: $A_2^2 = +0.23 4$.
1929.7 2	15 4	2826.18	5/2-	896.32	$7/2^{-}$			-
2142.52 15	34 <i>3</i>	3038.79	5/2+	896.32	7/2-	E1		Mult.: $A_2 = -0.07 \ 3$.
2194.3 2	5.9 [#] 6	3090.24	7/2+	896.32	$7/2^{-}$			$A_2 = +0.10$ 12.
2223.23 10	65 2	3119.56	3/2-	896.32	$7/2^{-}$	E2		Mult.: $A_2 = +0.095$.
2414.85 3	16.9 6	3311.19	$(7/2^+)$	896.32	$7/2^{-}$			$A_2 = +0.0\bar{3} 5.$
2465.7 4	13.0 7	3362.0	$(5/2^+, 7/2^+, 9/2^+)$	896.32	$7/2^{-}$			$A_2 = -0.01 \ 10.$
2481.7 4	<1.5	3378.2	9/2+	896.32	7/2-			I_{γ} : from branching relative to the 3378 γ as given in authors' Table II.
2492.72 10	170 10	2492.77	3/2+	0	9/2-			$A_2 = +0.04 \ 2.$
2553.9 6		3450.2	7/2+	896.32	7/2-			$A_2 = +0.10 \ 17.$
2564.3 2	65 2	2564.32	9/2+	0	9/2-	E1		Mult.: $A_2 = +0.25 \ 3$.
2582.7 4	20.4 10	2582.84	7/2+	0	9/2-	E1+M2		Mult.: $A_2 = +0.20 5$.
2593.5 3	12 3	3490.2	$(7/2^+, 9/2^+)$	896.32	$7/2^{-}$			
2599.9 2	89 2	2599.78	11/2+	0	9/2-	E1		Mult.: $A_2 = -0.11 4$.
2600.8	<11	2600.87	13/2+	0	9/2-			E_{γ} : from level energy difference.
								I_{γ} : transition not observed. Intensity is limit based on possible component in the 2599.9 peak.
2617.25 15	19 4	2617.25	5/2+	0	9/2-			
2645.3 <i>3</i>		3541.6	$(5/2^+, 7/2^+, 9/2^+)$	896.32	$7/2^{-}$			$A_2 = +0.05 5.$
2679.4 4	29 5	3575.7		896.32	$7/2^{-}$			
2705.5 2	22 5	3601.84	$(9/2^+)$	896.32	$7/2^{-}$	E1		Mult.: $A_2 = -0.29 \ 8.$
2740.99 7	266 2	2741.00	15/2+	0	9/2-	E3		Mult.: $A_2 = +0.48 I$.
2826.3 2	46 <i>1</i>	2826.18	5/2-	0	9/2-	E2		Mult.: $A_2 = +0.17 5$.

4

					208	Pb(t,2ny)	1983Ma15 (continued)		
γ ⁽²⁰⁹ Bi) (continued)									
Eγ	I_{γ} ‡	E_i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments		
2887.3 4	12.0 7	3783.6	$(5/2^+, 7/2^+, 9/2^+)$	896.32	$7/2^{-}$		Mult.: A ₂ =+0.17 10.		
3090.2 2	33 1	3090.24	7/2+	0	9/2-	E1+M2	Mult.: $A_2 = +0.105$.		
3132.8 2	36 1	3132.77	$11/2^+$	0	9/2-	E1	Mult.: $A_2 = -0.24 \ 4$.		
							E_{γ} : the authors' value of 3132.85 2 is a misprint.		
3153.2 2	37 1	3153.23	9/2+	0	9/2-	E1	Mult.: $A_2 = +0.26 \ 6.$		
3378.3 4	13.5 7	3378.2	9/2+	0	9/2-	E1	Mult.: $A_2 = +0.105$.		
3464.0 <i>3</i>	13.3 8	3464.0	$11/2^{+}$	0	9/2-	E1	Mult.: $A_2 = -0.28 \ 8$.		
3491.0 5	5 # 3	3490.2	$(7/2^+, 9/2^+)$	0	$9/2^{-}$				
3693.0 5		3693.0	$(11/2^{-})$	0	9/2-				
3703.4 6	8.4 [#] 22	3703.58	$(7/2^+)$	0	$9/2^{-}$				
3719 2		3719.0	$(7/2^+, 9/2^+, 11/2^+)$	0	9/2-				
3853 2		3853.0	$(7/2^+, 9/2^+, 11/2^+)$	0	9/2-				
3979.5 6		3979.5	$(7/2^+, 9/2^+, 11/2^+)$	0	9/2-		$A_2 = -0.05 \ 10.$		

[†] Tentative assignments from 1983Ma15 based on $\gamma(\theta)$ and spin-parity assignments, unless otherwise noted.

[±] Relative thick target yields integrated over all angles from E=16–MeV spectrum (1983Ma15). Authors also give I γ at 13 MeV. [#] Since I γ at 16 MeV is not given, the quoted value is from branching reported in the 13-MeV data.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

 $^{209}_{83}{\rm Bi}_{126}\text{--}5$

²⁰⁸Pb(t,2nγ) 1983Ma15

²⁰⁹₈₃Bi₁₂₆

²⁰⁸Pb(t,2nγ) 1983Ma15

 $^{209}_{\ 83}{\rm Bi}_{126}$