²⁰⁸Pb(p,p'),(pol p,p'): IAR 1985Me01,1968Wh02,1969Fi01

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013		

S(p)=3799.0 8 (2012Wa38).

1985Me01: (pol p,p') E=14.2-17.4 MeV polarized proton beams were produced from the Koln FN tandem Van de Graaff accelerator. Measured $\sigma(E_{p},\theta)$. Deduced isobaric analog resonances (IAR), spectroscopic factors.

1968Wh02: (p,p') E=14-18 MeV proton beams were produced from the University of Washington three-stage FN tandem Van de Graaff. A 99% enriched ²⁰⁸Pb target was used. Scattered protons were detected by two Si(Li) detectors, FWHM=26 keV. Measured $\sigma(E_p)$. Deduced levels, widths, isobaric analog.

1969Fi01: (p,pol p) E=16-18 MeV. Scattered protons were detected by a surface barrier detector. Measured $\sigma(E,\theta)$. Deduced breakup Radius.

1971Da18: (p,p) E=8-18 MeV. Scattered protons were detected by lithium-drifted silicon detectors. Measured $\sigma(E_p,\theta)$. Deduced isobaric analog resonance parameters, spectroscopic factors.

Others:

(p,p'): 2011He08, 2010He08, 2008GoZT, 1996Ra07, 1969Ri10.

(p,p): 1966Ka02, 1969DoZZ, 1972Se10.

Spreading widths and isospin purity of the IAR are deduced by 1985Me01.

Coulomb energy difference=18793 11, a weighted average of values of 1968Wh02 (18787 11) and 1972Se10 (18811 19). The value quoted for 1968Wh02 is a weighted average deduced by evaluators based on $E(res)-E(^{209}Pb \text{ parent state})+S(n)(^{209}Pb)$ with the resonance energies, E(res), in center-of-mass coordinates.

²⁰⁹Bi Levels

Level widths are weighted averages, as given by 1985Me01, of values of 1968Wh02 and 1985Me01. The elastic-scattering partial widths, Γ_p , are weighted averages, as given by 1985Me01, of data of 1968Za01 (as reanalyzed by 1968Wh02) and 1985Me01.

E(level) [†]	$J^{\pi \ddagger}$	s#	Comments
S(p)+14899 4	9/2+	0.98	Γ =251 keV 6; $\Gamma_{\rm p}$ =21.9 keV 6
			J^{π} : if L(n)=4 for the analog state in ²⁰⁹ Pb.
S(p)+15658 26	$(11/2^+)$		$\Gamma = 221 \text{ keV } 19; \Gamma_p = 1.7 \text{ keV } 4$
			J^{π} : probable analog of the $1i_{11/2}$ neutron state in ²⁰⁹ Pb.
S(p)+16380	$(15/2^+)$		$\Gamma = 202 \text{ keV } 25; \Gamma_p = 0.85 \text{ keV } 80$
			J^{π} : probable analog of the $1_{115/2}$ neutron state in ²⁰⁹ Pb.
			E(level): the uncertainty is 150 keV.
			The proton partial Γ is from 1985Me01.
S(p)+16466 4	5/2+	0.86	Γ =297 keV 5; $\Gamma_{\rm p}$ =46 keV 6
			J^{π} : if L(n)=2 for the analog state in ²⁰⁹ Pb.
S(p)+16953 6	$(1/2^+)$	0.90	Γ =320 keV 10; $\Gamma_{\rm p}$ =52.0 keV 15
			J^{π} : probable analog of the 4s _{1/2} neutron state in ²⁰⁹ Pb.
S(p)+17398 16	7/2+	0.84	$\Gamma = 293 \text{ keV } 16; \Gamma_p = 43 \text{ keV } 4$
			J^{π} : if L(n)=4 for the analog state in ²⁰⁹ Pb.
			$\Gamma_{\rm p}$ is from 1968Za01 as reanalyzed by 1968Wh02. The value from 1985Me01 is suspect since
			the authors' energy range covers only the lower part of the resonance.
S(p)+17457 18	$3/2^{+}$	0.86	Γ =278 keV 19; Γ_{p} =35 keV 7
			J^{π} : if L(n)=2 for the analog state in ²⁰⁹ Pb.
			Γ_p is from 1968Za01 as reanalyzed by 1968Wh02. The value from 1985Me01 is suspect since
			the authors' energy range covers only the lower part of the resonance.

[†] Resonance energies (given in the lab coordinate system), are from 1985Me01. Values are systematically lower by 25 keV on the average compared with data of 1968Wh02 and 1983BaZL. Others: 1968Wh02, 1971Da18 (no uncertainties given), 1983BaZL.

[‡] From (p,pol p) data of 1969Fi01 (except for the ground-state value which is from 1967FiZY) based on known L(n) transfer to assumed parent analog. Additional tentative assignments are noted.

[#] From 1971Da18. Several sets of values, calculated with different models and parameters, are also given by 1985Me01.