²⁰⁸Pb(p, γ): IAR 1971Sn03

History				
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. Chen # and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013	

 $S(p)=3799.0 \ 8 \ from \ 2012Wa38.$

1971Sn03:E=8.8-18.0 proton beams were produced from the Stony Brook FN Tandem Van de Graaf accelerator. Target was 3.5 mg/cm² self-supporting 208 Pb. γ -rays were detected in a large NaI spectrometer. Measured σ (E γ). Authors obtained resonance energies and total widths but quote values only for the 209 Pb ground-state analog. They claim good agreement with values of 1968Wh02 based on (p,p').

Other:

1968Cr05: proton beams were produced from the University of Washington High Voltage FN tandem accelerator. γ -rays were detected with a 20.7 cm³ coaxial Ge(Li) detector. Measured $\sigma(E\gamma,\theta)$. Deduced levels.

²⁰⁹Bi Levels

 Γ_{γ} (nlj) are radiative widths to proton states with configuration=nlj deduced in 1971Sn03 using Γ_{p} from 1968Wh02.

E(level) [†]	$J^{\pi \ddagger}$	Comments
S(p)+14899	9/2+	Γ =275 keV 20
		E(level): E(res)=14930 30 (1971Sn03).
		$\Gamma_{\nu}(2f_{7/2})=110 \text{ eV}, \Gamma_{\nu}(1h_{9/2})<10 \text{ eV}.$
S(p)+15658	$(11/2^+)$	$\Gamma_{\gamma}(1h_{9/2})\approx 190 \text{ eV}.$
S(p)+16466	5/2+	$\Gamma_{\gamma}(2f_{7/2})=40 \text{ eV}, \Gamma_{\gamma}(3p_{3/2})=95 \text{ eV}.$
S(p)+17398	7/2+	$\Gamma_{\gamma}(1\text{hg}_{1/2}) \approx 15 \text{ eV}, \Gamma_{\gamma}(2\text{f}_{7/2}) < 10 \text{ eV}.$

[†] Resonance energies (given in the lab coordinate system), are from ²⁰⁸Pb(p,p')(pol p,p') IAR (1985Me01).

[‡] From Adopted Levels.