²⁰⁸Pb(\mathbf{p}, γ): giant resonance **1974Sn01**

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013	

E=17.5-25.0 MeV proton beam was produced from the three-stage FN accelerator at the University of Washington. Target was self-supporting 2.8 mg/cm² ²⁰⁸Pb. γ -rays were detected with a 10 inch by 10 inch. NaI detector. Measured $\gamma(\theta)$. Deduced resonance.

Excitation function and asymmetry measured for unresolved γ 's to g.s., 897, and 1608 levels.

²⁰⁹ Bi	Levels
-------------------	--------

E(level)	Comments
0.0	

≈23000 Γ≈3.5 MeV

Based on a comparison with a collective E0 or E2 resonance observed at ≈ 22 MeV in ²⁰⁸Pb(e,e'), the authors suggest that the observed resonance at 23 MeV is a collective E2 excitation. Observation in (p,γ) rules out E0.