208 Pb(α ,t) 1985Ga01,1980Gr09,1984Ga37

History						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. Chen # and F. G. Kondey	NDS 126, 373 (2015)	30-Sep-2013			

Target ²⁰⁸Pb $J^{\pi}(g.s.)=0^{+}$.

1985Ga01: E=80 MeV α beam was produced from the K90 isochronous Institut de Physique Nucleaire (ISN) Grenoble cyclotron. Targets were 98% enriched ²⁰⁸Pb of 6 and 1 mg/cm² thick. Tritons were momentum analyzed by the quadrupole-dipole (QD) magnetic spectrometer and detected by a gas delay-line counter backed by two plastic scintillators, FWHM=60 keV. Measured $\sigma(E_t,\theta)$. Deduced levels, L, J^{π} from DWBA analysis.

1980Gr09: E=40 MeV α beam was produced from the Princeton Cyclotron. Targets were 65-160 μ g/cm² thick 99% enriched 208 Pb on 5 and 10 μ g/cm² carbon backings. Tritons were momentum analyzed with the Princeton quadrupole-three dipole (Q-3D) magnetic spectrograph and detected by a single-wire charge-division position-sensitive proportional counter, FWHM=10-14 keV. Measured α (E_d, θ). Deduced levels, J^{π} , spectroscopic factors from DWBA analysis.

1984Ga37: E= 80 MeV α beam was produced from the Grenoble cyclotron. Tritons were momentum analyzed with a QD spectrometer and detected by a gas delay-line counter, FWHM=50 keV. Measured σ(θ). Deduced levels, Γ, spectroscopic factors.
Others: 1967Li09, 1981Pe10 (studied the energy dependence of the spectroscopic factors at 39.8, 61.5, and 81.4 MeV), 1985IsZV, 1985OhZX, 1985OhZX, 1986IsZX. See also 1985Sa34 for a comparison of these excitation energies with a calculation based on the coupling of the proton states with eight collective surface vibrational states in 208Pb.

²⁰⁹Bi Levels

E(level) [†]	J^{π} @	L &	C^2S^a	Comments
0	9/2-	5	0.80	
899 [‡] <i>1</i>	7/2-	3	0.76	C ² S: 0.89 normalized to unity for the ground-state (1980Gr09).
1608 [‡] 2	13/2+	6	0.74	C ² S: 1.05 normalized to unity for the ground-state (1980Gr09).
2499 7	3/2+	2	0.014	
2601 [‡] 3	13/2+	6	0.065	C ² S: 0.09 normalized to unity for the ground-state (1980Gr09).
2826 [‡] <i>3</i>	5/2-	3	0.57	C ² S: 0.65 normalized to unity for the ground-state (1980Gr09).
3139 <i>15</i>	3/2-	1	0.44	•
3410 <i>15</i>	13/2+	6	0.03	
3503 <i>15</i>	5/2-,7/2-	3	0.04,0.03	
3650 <i>15</i>	$1/2^{-}$	1	0.20	
3707 <i>15</i>				
3835 15	13/2+	6	0.03	
3927 15		≥7		
4019 25		≥7		
4174 25	$15/2^{-}$	7	0.045	
4247 25	$15/2^{-}$	7	0.06	
4459 25	$1/2^{-} \& 7/2^{-}$	1+3	0.10+0.10	
4543 25	15/2-	(7)	< 0.02	
4613 25	5/2-,7/2-	3	0.06,0.05	
4700 25				
4795 25	$11/2^+, 13/2^+$	6	0.04	
4886 25	15/2-	7	0.02	
4998 25	15/2-	7	0.03	
5087 25	5/2-	3	0.07	
5173 25	5/2-	3	0.07	
5277 25	15/2-	7	0.04	
5380 25	15/2-	7	0.03	
5469 25	$11/2^{+}$	6	0.06	
5580 <i>25</i>	11/2+	6	0.04	
5693 25	$3/2^+,5/2^+$	(2) 6 [#]	0.15	
7.2×10^{3} 2		6 [#]	0.15 [#]	
8.7×10 ^{3#} 5		(6+7)#	≈1.0 [#]	
0.7710		(017)	1.0	

208 Pb (α,t) 1985Ga01,1980Gr09,1984Ga37 (continued)

²⁰⁹Bi Levels (continued)

[†] From 1985Ga01, unless otherwise noted.

[‡] From 1980Gr09. ‡ From 1984Ga37. Γ (7.2E2)=0.63 MeV 20, Γ (8.7E3)= 5.3 MeV 10.

[®] From 1985Ga01, assumed by the authors for the extraction of C²S.

[&]amp; From comparison of experimental cross sections with DWBA predictions (1985Ga01). ^a Spectroscopic factor $C^2S = (\sigma(\theta)^{exp}/\sigma(\theta)^{DWBA})/(N \times g)$, where N=36 (1985Ga01) is the normalization factor and $g=(2J_f+1)/(2J_i+1)$.