²⁰⁸Pb(³He,d) 1970El13,1980Gr09,1968Ba34

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013

Target ²⁰⁸Pb $J^{\pi}(g.s.)=0^+$.

1970E113: E=18 MeV ³He beam was produced from the EN tandem Van de Graaff accelerator of the University of Pittsburgh. A $100 \ \mu g/cm^2$ carbon-backed 99.5% enriched ²⁰⁸Pb target was used. Deuterons were momentum analyzed by an Enge split-pole magnetic spectrometer and detected in photographic plates, FWHM=16 keV. Measured $\sigma(E_d, \theta)$. Deduced levels.

- 1980Gr09: E=30 MeV ³He beam was produced from the Princeton Cyclotron. Target were 65-160 μ g/cm² thick 99% enriched 208 Pb on 5 and 10 μ g/cm² carbon backings. Deuterons were momentum analyzed with the Princeton quadrupole-three dipole (Q-3D) magnetic spectrograph and detected by a single-wire charge-division position-sensitive proportional counter, FWHM=10-14 keV. Measured $\sigma(E_d,\theta)$. Deduced levels, J^{π} , spectroscopic factors from DWBA analysis.
- 1968Ba34: E=44.2 MeV ³He beam was produced from the University of Michigan 83-inch sector-focused cyclotron. A 0.75 mg/cm² thick target of 99.3% enriched ²⁰⁸Pb was used. Deuterons were momentum analyzed by a magnetic spectrographs and detected in nuclear track plate, FWHM \approx 50 keV. Measured $\sigma(E_d, \theta)$. Deduced levels, J^{π} , spectroscopic factors from DWBA analysis.
- 1967Wi09: E=51.3 MeV ³He beam was produced from the Oak Ridge Isochronous Cyclotron. A target of 0.47 mg/cm² thick 95% enriched ²⁰⁸Pb foil was used. Deuterons were momentum analyzed with a broad range magnetic spectrograph, FWHM=60 keV. Measured $\sigma(E_d,\theta)$. Deduced levels, L, J^{π} , spectroscopic factors from DWBA analysis.
- 1967Wo03: E=24 MeV ³He beam was produced from the Los Alamos tandem Van de Graaff accelerator. A target of 200 μ g/cm² self-supporting ²⁰⁸Pb foil was used. Deuterons were momentum analyzed with an Elbek magnetic spectrograph, FWHM≈25 keV. Measured $\sigma(E_d,\theta)$. Deduced levels, J^{π} , spectroscopic factors from DWBA analysis.
- 1968E101: E=20.3 MeV ³He beam was produced from the tandem accelerator of the Niels Bohr Institute. Target was 300 μ g/cm² self-supporting foil of ²⁰⁸Pb, 99.3% enriched. Deuterons were momentum analyzed with a broad-range magnetic spectrograph, FWHM=30 keV. Measured $\sigma(E_d, \theta)$. Deduced levels, J^{π} , spectroscopic factors from DWBA analysis.
- 1984Ga37: E= 240 MeV α beam was produced from the Grenoble cyclotron. Deuterons were momentum analyzed with a QD spectrometer and detected by a gas delay-line counter, FWHM=50 keV. Measured $\sigma(\theta)$. Deduced levels, Γ , spectroscopic factors.

²⁰⁹Bi Levels

Spectroscopic factor C²S: N×g×C²S= $\sigma(\theta)^{exp}/\sigma(\theta)^{DWBA}$, where N is the normalization factor and g=(2J_f+1)/(2J_i+1) for (³He,d) reactions (1966Ba54). N=4.4 (1968Ba34), 4.42 (1967Wi09).

Summary of spectroscopic values. Parameters used by authors for extraction of spectroscopic values given below are very similar except for the spin-orbit strength (so). The second column of so=6 data of 1967Wi09 are from 1974Fo22 based on their reanalysis of data of 1967Wi09 to include non-locality and finite range corrections.

	E(level)	configurat	ion		C ²	² S		
		1967Wi so=6	. <mark>0</mark> 9 19 so=6	967Wo03 1 so=?	968Ba34 so=6	1968E101 so=32	so=6	 1980Gr09
g.s. 897	$1h_{9/2}$ $2f_{7/2}$	1.00 1.12	0.54 0.65	1.00# 0.88	0.95 1.18	1.17 0.78		1.00# 1.38
1612 2601	$1i_{13/2}$ $1i_{13/2}$	0.94	0.52	0.92	0.88 -@	0.56		0.85 0.08
2824 3116 3637	$2 1_{5/2}$ $3 \mathbf{p}_{3/2}$ $3 \mathbf{p}_{1/2}$	1.14 1.08 0 7-0 9	0.61	0 49†	1.15	0.88 0.67 3 0.49		0.87 0.98 0.54
4421 ⁺ 4447	if 3p _{1/2} & if 2f _{7/2} &	011 010		0110	0.46	0.16&	c	0101

@ σ is \approx 13% of the 1612 1i_{13/2} level

† Level misinterpreted by authors as $3p_{3/2}$ (see 1967Li09) & 4421+4447 peak analyzed as single level. 1968Ba34 assumed $3p_{1/2}$ whereas 1968E101 assumed $2f_{7/2}$. 1970El13 resolved the doublet and determined $\sigma(4421)/\sigma(4447)=3$. Based on a reanalysis of

the data of 1968El01, 1970El13 suggest that the more intense 4421 level has the 3p_{1/2} strength and the weaker 4447 level the 2f_{7/2} strength # Spectroscopic values normalized to unity for the ground-state transition

E(level) [†]	L#	$E(level)^{\dagger}$	L#	E(level) [†]	_L#	C^2S
0.0	5	3490 10		4421 10	$(1)^{a}$	
899 <i>1</i>	3	3635 4	1	4447 10	(2,3) ^{<i>a</i>}	
1613 2	6	3810 22		4522 10	@	
2601 3	&	3970 22		4600 10	@	
2826 <i>3</i>	3	4095 10		5304 10		
3121 3	1	4160 22		7.15×10 ³ [‡] 15	6 [‡]	0.15 [‡]
3410 22		4240 22		$10.3 \times 10^{3 \ddagger} 5$	(6+7)‡	≈1.0 [‡]

[†] Data with $\Delta E=10$ keV are from 1970El13; data with $\Delta E=1-4$ keV are from 1980Gr09; other data are from 1968Ba34, unless otherwise noted.

[±] From 1984Ga37. Γ(7.15E3)=1.5 MeV 3, Γ(10.3E3)=5.7 MeV 10.

[#] From 1967Wi09 and 1968Ba34 based on DWBA analysis.

[@] $\sigma(\theta)$ indicates low-L(n) transfer (1968Ba34).

[&] $\sigma(\theta)$ indicates high-L(n) transfer (1968Ba34).

^{*a*} From 1970E113 based on a reanalysis of data of 1968Ba34 for 4421+4447 doublet with relative strength 75%(4421) and 25%(4447) as found in the work of 1970E113.