	_			His	story		
	Ту	pe	A	Author		Citation	Literature Cutoff Date
	Full Eva	aluation	J. Chen [#] a	nd F. G. Kondev	NDS	5 126, 373 (2015)	30-Sep-2013
$Q(\beta^{-}) = -3954 2$ S(2n)=15798 12 Additional info	21; S(n)=8484 10 3, S(2p)=7406 6 rmation 1.	$Q; S(p)=27, Q(\varepsilon p)=-$	$702 5; Q(\alpha) =$ 1302 5, Q(β	=5756.9 20 201 (n)=-11298 12 (2	2Wa38 2012W	8 /a38).	
				²⁰⁹ At	Levels	S	
Additional inf	formation 2.						
				Cross Referenc	e (XR	EF) Flags	
			A B C D	²⁰⁹ Rn ε decay ²¹³ Fr α decay ²⁰⁵ Tl(⁹ Be,5nγ) ²⁰⁶ Pb(⁶ Li,3nγ)	E F G	209 Bi (π^+,π^-) 209 Bi $(^{3}$ He $,3n\gamma)$ 209 Bi $(\alpha,4n\gamma)$	
E(level) [†]	J^{π}	T _{1/2}	XREF			Co	mments
0	9/2-	5.42 h 5	ABCD FG	$\%\alpha$ =4.1 5; $\%\varepsilon$ J ^{π} : favored α -d T _{1/2} : weighted 5 (1969Go22 $\%\alpha$: from 1968 Q: Q(²⁰⁹ At)/Q(configuration=7 Eac(decoupt to ²⁰)	$+\%\beta^{+}$ lecay (averag 3). 3GuZX (^{210}At) $\pi(1h_{9/2})$	=95.9 5 (HF=1.2) to ²⁰⁵ Bi ; ge of 5.41 h 5 (196 (.))=1.47 7 from (α ,4 (α))=1.47 7 from (α ,4	g.s. $(J^{\pi}=9/2^{-})$. 88GuZX), 5.5 h 2 (1951Ba14) and 5.4 h n γ) (1983Ha51).
408.37 3	7/2-		AB D F	J^{π} : 408.32 γ E2 $\gamma\gamma(\theta)$ from ²	09 Rn <i>e</i>) to $9/2^-$, direct fee e decay rules out J	eding in ²⁰⁹ Rn ε decay (J ^{π} =5/2 ⁻), =5/2.
577.08 7	11/2-		AB D FG	J^{π} : 577.07γ M	1+E2 1	to $9/2^-$, 147.97 γ N	11(+E2) from 13/2 ⁻ .
725.07 8	13/2-		CD FG	configuration=7 J^{π} : 725.05 γ str	π(1h _{9/2} etched	$(2)^{+1} \otimes 2^{+}$. E2 to $9/2^{-}$.	
745.81 4	7/2-		A D F	configuration= π J ^{π} : 745.78 γ M Additional info	π(1h _{9/2} 1(+E2) prmatic	$(2)^{+1} \otimes 2^+$. to $9/2^-$ and direc on 4.	t feeding in ²⁰⁹ Rn ε decay (J ^{π} =5/2 ⁻).
789.07 <i>21</i> 794.62 <i>5</i>	(9/2) ⁻ 5/2 ⁻		DF AF	J^{π} : 380.7 γ M10 J^{π} : 794.68 γ E2 209 Bp α data	(+E2) 2 to 9/2	to $7/2^-$, no direct to 2^- , 386.43 γ (M1) t	feeding in ²⁰⁹ Rn ε decay (J ^{π} =5/2 ⁻). o 7/2 ⁻ , probable direct feeding in
934.51? <i>13</i>	$(7/2)^{-}$		Α	J^{π} : 526.8 γ M1-	+E2 tc	$572^{-3/2}$, 357.38γ to	$11/2^{-}$, probable direct feeding in 209 Rn
1081.22 5	(5/2,7/2)-		A F	J^{π} : 672.84 γ E2	(+M1)) to 7/2 ⁻ , 1082γ to	$9/2^-$, probable direct feeding in 209 Rn
1093.13 16	(7/2)-		Α	J^{π} : 684.75 γ (E)	0+M1	+E2) to 7/2 ⁻ , prob	able direct feeding in 209 Rn ε decay
1097.74 5	(7/2) ⁻		A F	$(J^{\pi}=5/2^{-}).$ $J^{\pi}: 689.30\gamma M$ $(J^{\pi}=5/2^{-}), (6)$ $\delta(408\gamma) > 10$ J=5/2.	1(+E2) 598 γ)(4 and δ () to $7/2^-$, probable 408 γ)(θ) from 198 698 γ)<0.28, is con	direct feeding in 209 Rn ε decay 5BuZT in 209 Rn ε decay, given asistent with J=7/2 and 9/2, not with
1131.11 11	(5/2,7/2)-		A F	J^{π} : 722.74 γ M	1(+E2)) to $7/2^-$, probable	direct feeding in 209 Rn ε decay
1214.28 <i>13</i> 1242.36 <i>11</i>	11/2 ⁻ ,13/2 ⁻ (13/2 ⁻)		DF DF	J^{π} : 489.2 γ M10 J^{π} : 517.2 γ (E2)	(+E2)) to 13	to 13/2 ⁻ , 637.2γ M B/2 ⁻ , 665.3γ (M1)	$M1(+E2)$ to $11/2^{-}$ and 1214.3γ to $9/2^{-}$. to $11/2^{-}$; strong population of this level

Continued on next page (footnotes at end of table)

²⁰⁹At Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				in (⁶ Li,3n γ) argues against J ^{π} =9/2 ⁻ .
1269.84 17	$(11/2, 13/2)^{-}$		F	J^{π} : 692.8 γ M1+E2 to 11/2 ⁻ .
1321.57 13	17/2-		CD FG	J^{n} : 596.50 γ stretched E2 to 13/2 ⁻ .
1220 57 22	$(12/2 \ 15/2)^{-}$		F	configuration= $\pi(1h_{9/2})^{1/3}$.
1393.57.22	(13/2, 15/2) $(13/2, 15/2)^{-}$		r F	J : 014.37 M1+E2 to 13/2 . $I^{\pi}: 668.57 \text{ M1 to } 13/2^{-1}$
1394.16 6	$(7/2)^{-}$		A	J^{π} : 1394.50 γ E2(+M1) to 9/2 ⁻ , direct feeding in ²⁰⁹ Rn ε decay
10, 110 0	(1)			$(J^{\pi}=5/2^{-}).$
1427.67 16	21/2-	25.3 ns 7	CD FG	μ=+9.9 2; Q=0.78 8
				J^{π} : 106.10 γ stretched E2 to 17/2 ⁻ .
				T _{1/2} : weighted average of 29 ns 2 (1976Sj01) from (6 Li,3ny), and 25 ns <i>I</i> (1975Be39) and 24 ns 2 (1983Ma08) from (α ,4n γ), 24 ns 2 from
				1985Ra21 from (³ He,3nγ).
				μ : from g-factor=+0.94 2 weighted average of +0.88 6 (19/5Be39) in 209D: (4) = 1 + 0.05 2 (107(C)(01) = 206D) (61 = 2)
				$2^{\circ\circ}$ B1(α ,4n γ) and +0.95 2 (19/05j01) in $2^{\circ\circ}$ Pb($^{\circ}$ L1,5n γ). O: from 1083Ma08 in (α /n α) by TDPAD
				configuration = $\pi (1h_{0,2})^{+3}$
1516.90 14			F	
1659.97 22			F	
1772.56 13	$(15/2^{-})$		DF	J^{π} : 530.2 γ M1+E2 to (13/2 ⁻).
1851.72 19	23/2-		CD FG	J^{π} : 424.5 γ stretched M1 to 21/2 ⁻ .
1007 07 16	(10/2)=			configuration= $\pi(1n_{9/2}, 2r_{7/2})^{1/2}$.
1907.27 10	(19/2) * 7/2+		FG	J [*] : 585./ γ M1+E2 to 1//2.
1955.52 0	1/2		A	J [*] : direct feeding in ²⁰ Kn ε decay (J [*] =5/2), 855.77 E1 to (7/2), 1954.3 γ to 9/2 ⁻ .
2075.87 24	$(19/2^{-})^{\ddagger}$		FG	configuration= $\pi (1h_{0/2}^2, 2f_{7/2}^1)^{+3}$.
				J^{π} : 754.3 γ (M1) to $\sqrt[9]{17/2}^{1/2}$.
2086.36 24			F	-
2135.81 6	$(5/2,7/2)^+$		A	J^{π} : 1037.95 γ E1(+M2) to (7/2) ⁻ , probable direct feeding in ²⁰⁹ Rn ε
2183.2.6	$(23/2^{-})$		G	decay $(J^{*}=5/2)$. I^{π} : 755.5 $_{22}$ (M1) to 21/2 ⁻
2105.2 0	$(23/2^{-1})$		FG	I^{π} : 810 for stretched F2 to 21/2 ⁻ and 386 for D+O to 23/2 ⁻
2250.5 5	25/2		10	configuration = $\pi (1h_{0/2})^{+3} \otimes 2^{+}$
2402.8 6	$(21/2^{-})$		G	J^{π} : 326.9 γ (M1) to (19/2 ⁻).
2415.01 9	5/2+,7/2+		A	J^{π} : direct feeding in ²⁰⁹ Rn ε decay ($J^{\pi}=5/2^{-}$) and 461.47 γ M1(+E2) to 7/2 ⁺ .
2429.32 22	29/2+	0.916 µs 10	CD FG	$\mu = 15.38 \ 14; \ Q = 1.50 \ 15$
				J^{π} : 577.60 γ E3 to 23/2 ⁻ .
				$T_{1/2}$: weighted average of 0.88 μ s 10 (19/5Be39) and 0.794 μ s 20 (1082Ma08) from (a 4m) 0.022 μ s 11 (1087Dr01) from
				(1985) (1987)
				$0.68 \text{ us } 8 (1976\text{Si}01) \text{ in } (^{6}\text{Li} 3m)$
				μ : from weighted average of g-factor=1.061 10 (1987Ca23) and 1.060 20
				(1975Be39) in $(\alpha, 4n\gamma)$ by TDPAD.
				Q: from $(\alpha, 4n\gamma)$ by TDPAD (1983Ma08).
				configuration= $\pi(1h_{9/2}^2, 1i_{13/2}^1)^{+3}$.
2516 70 11	$(5/2 \pm 0/2)^{\pm}$			Additional information 5. $III = IIII = IIII = IIIII = IIIIIIIIII$
2510.70 11	$(5/2 + 7/2^+)$		Δ	J. MI(+E2) 580.857 to $(5/2,7/2)^+$, 1777.27 to $7/2^-$.
2322.21 0	(3/2, 7/2)		л	$(J^{\pi}=5/2^{-})$, 2114.05 γ to 7/2 ⁻ .
2569.2 3	(3/2 ⁻ ,5/2,7/2)		A	J^{π} : 2160.7 γ to 7/2 ⁻ , 1774.3 γ to 5/2 ⁻ ; direct feeding in ²⁰⁹ Rn ε decay $(\frac{\pi}{2}-5/2^{-})$
2581.13 15	(3/2,5/2.7/2)		A	J^{π} : direct feeding in ²⁰⁹ Rn ε decay ($J^{\pi}=5/2^{-}$).
2605.4 3	$(25/2^+)^{\ddagger}$		FG	J^{π} : 753.7 γ (E1) to 23/2 ⁻ .
	<			

Continued on next page (footnotes at end of table)

²⁰⁹At Levels (continued)

E(level) [†]	J^{π}	XR	EF	Comments
2612.0 <i>3</i> 2677.4 8	(25/2 ⁻)		FG G	configuration= $\pi (1h_{9/2}^2 1i_{13/2}^1)^{+3}$. J ^{π} : 760.3 γ (M1) to 23/2 ⁻⁷ .
2683.9 6	$(27/2^{-})^{\ddagger}$		G	J^{π} : 445.6 γ (M1) to 25/2 ⁻ .
2689.92 24	$(3/2^{-}, 5/2, 7/2)$	Α		J^{π} : direct feeding in ²⁰⁹ Rn ε decay ($J^{\pi}=5/2^{-}$), 2281.7 γ to 7/2 ⁻ .
2712.9 5	$(3/2^{-}, 5/2, 7/2)$	Α		J^{π} : 1616.0 γ to (7/2 ⁻); direct feeding in ²⁰⁹ Rn ε decay ($J^{\pi}=5/2^{-}$).
2821.9 5	(5/2,7/2)	A		J ^{π} : 868.43 γ to 7/2 ⁺ , 2413.5 γ to 7/2 ⁻ ; probable direct feeding in ²⁰⁹ Rn ε decay (J ^{π} =5/2 ⁻).
3140.44 13	(5/2, 7/2)	Α		J^{π} : direct feeding in ²⁰⁹ Rn ε decay ($J^{\pi}=5/2^{-}$), 1186.91 γ to 7/2 ⁺ , 2394.7 γ to 7/2 ⁻ .
3172.3 3	$(3/2^{-}, 5/2, 7/2)$	Α		J^{π} : 2426.0 γ to 7/2 ⁻ ; direct feeding in ²⁰⁹ Rn ε decay ($J^{\pi}=5/2^{-}$).
3188.6 <i>3</i>	$(31/2^+)^{\ddagger}$		FG	J^{π} : 759.3 γ (M1) to 29/2 ⁺ .
3292.9 8	$(29/2^{-})^{\ddagger}$		G	
3388.44 20	$(3/2^{-}, 5/2, 7/2)$	Α		J^{π} : 2642.9 γ to 7/2 ⁻ ; direct feeding in ²⁰⁹ Rn ε decay ($J^{\pi}=5/2^{-}$).
3544.40 17	(5/2,7/2)	A		J^{π} : probable direct feeding in ²⁰⁹ Rn ε decay ($J^{\pi}=5/2^{-}$); 3136.0 γ to $7/2^{-}$; 1129 γ to $5/2^{+},7/2^{+}$.
3551.4 <i>3</i>	(5/2,7/2,9/2)	Α		J^{π} : 1597.4 γ to 7/2 ⁺ , and 3143.7 γ to 7/2 ⁻ .
3592?	(33/2 ⁺) [‡]		G	E(level): the relative order of the 405.4 γ and 583.7 γ has not been established. These cascade transitions could define a level at 3771 instead of at 3592. J ^{π} : 405.4 γ (M1) to (31/2 ⁺).
3627.0 4	(3/2 ⁻ ,5/2,7/2)	Α		J^{π} : direct feeding in ²⁰⁹ Rn ε decay ($J^{\pi}=5/2^{-}$); 3218.0 γ to 7/2 ⁻ .
3748.7 6	$(33/2^+)^{\ddagger}$		G	
3753.7 3	(5/2,7/2)	A		J ^{π} : direct allowed feeding in ²⁰⁹ Rn ε decay (J ^{π} =5/2 ⁻); 3007.5 γ to 7/2 ⁻ ; 1338.0 γ to 5/2 ⁺ ,7/2 ⁺ .
3812.6 6	$(33/2^+)^{\ddagger}$		G	J^{π} : 624.0 γ (M1) to (31/2 ⁺).
3899.1 6	$(33/2^+)^{\ddagger}$		G	J^{π} : 710.5 γ (M1) to (31/2 ⁺).
4176	$(35/2^+)^{\ddagger}$		G	J^{π} : 583.7 γ (M1) to (33/2 ⁺).
4376.6 8			G	
4506?	$(35/2^+)$		G	J^{π} : 759.0 γ (M1) to (33/2 ⁺).
4696.9 12			G	
35×10 ⁵ 1	$(9/2^{-})$		E	J ^{<i>n</i>} : possible double isobaric analog of the ²⁰⁹ Bi g.s. (1980Mo20) from (π^+,π^-) .

[†] From a least-squares fit to the γ -ray energies.

[‡] From $(\alpha, 4n\gamma)$ (1990Mu04) based on $\gamma(\theta)$.

						Adop	ted Levels	s, Gammas (c	continued)
								$\gamma(^{209}\text{At})$	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^g	δ ^{ik}	α^{j}	Comments
408.37	7/2-	408.32 4	100	0	9/2-	E2(+M1)		0.238	$\begin{aligned} &\alpha(\text{K}){=}0.194 \ 3; \ \alpha(\text{L}){=}0.0340 \ 5; \ \alpha(\text{M}){=}0.00803 \ I2 \\ &\alpha(\text{N}){=}0.00208 \ 3; \ \alpha(\text{O}){=}0.000445 \ 7; \ \alpha(\text{P}){=}6.16{\times}10^{-5} \ 9 \\ &\text{Mult.:} \ \alpha(\text{K}){\text{exp}}{=}0.0348 \ I7, \ \text{K:L:M}{=}163 \ 6:73 \ 5:20.3 \ 23 \ \text{in} \ {}^{209}\text{Rn} \ \varepsilon \\ &\text{decay} \ (1974\text{Vy01}), \ \alpha(\text{K}){\text{exp}}{=}0.035 \ 2, \ \text{A}_{2}{=}{-}0.03 \ I \ \text{and} \ \text{A}_{4}{=}{-}0.01 \ I \\ &\text{in} \ ({}^{3}\text{He}{,}3\gamma) \ (1985\text{Ra21}). \end{aligned}$
577.08	11/2-	577.07 [‡] 8	100	0	9/2-	M1+E2	0.8 1	0.067 5	$\alpha(K)=0.054 4; \alpha(L)=0.0102 6; \alpha(M)=0.00244 12$ $\alpha(N)=0.00063 3; \alpha(O)=0.000134 7; \alpha(P)=1.81\times10^{-5} 10$ Mult., δ : $\alpha(K)$ exp=0.050 7 from 1974Vy01 in ²⁰⁹ Rn ε decay; $\alpha(K)$ exp=0.055 3, A ₂ =-0.25 1, A ₄ =+0.01 1 from 1985Ra21 in (³ He,3ny), $\alpha($ exp)=0.07 1, A ₂ =-0.133 22 from 1975Be39 in (α ,4n γ), for 577.07+577.60 doublet.
725.07	13/2-	147.97 10	7.5 9	577.08	11/2-	M1(+E2)	<0.25	3.89 9	$\alpha(K)=3.12 \ 10; \ \alpha(L)=0.584 \ 13; \ \alpha(M)=0.139 \ 4$ $\alpha(N)=0.0361 \ 10; \ \alpha(O)=0.00769 \ 18; \ \alpha(P)=0.001049 \ 17$ I_{γ} : weighted average of values from (⁶ Li,3n\gamma) and (³ He,3n\gamma). E_{γ} : weighted average of values from (α ,4n\gamma), (⁶ Li,3n\gamma) and (³ He,3n\gamma). Mult.: $\alpha(L)exp=0.52 \ 5, \ A_2=-0.11 \ 1, \ A_4=+0.01 \ 2 \ from \ 1985Ra21 \ in (3He,3n\gamma), \ \alpha(exp)=3.9 \ 5 \ and \ A_2=-0.044 \ 43 \ from \ 1975Be39 \ in (array)$
		725.05 10	100	0	9/2-	E2		0.01472	$\alpha(X,417)$. $\alpha(K)=0.01104 \ 16; \ \alpha(L)=0.00277 \ 4; \ \alpha(M)=0.000682 \ 10$ $\alpha(N)=0.0001764 \ 25; \ \alpha(O)=3.67\times10^{-5} \ 6; \ \alpha(P)=4.64\times10^{-6} \ 7$ E_{γ} : weighted average from $(\alpha,4n\gamma)$, $(^{6}Li,3n\gamma)$ and $(^{3}He,3n\gamma)$. Mult.: $\alpha(K)\exp=0.011 \ I, \ A_{2}=+0.11 \ I, \ A_{4}=-0.03 \ I \ from \ 1985Ra21$ in $(^{3}He,3n\gamma), \ \alpha(\exp)=0.016 \ 3, \ \alpha(K)\exp/\alpha(L)\exp=4.5 \ 4, \ A_{2}=+0.091 \ 8$ from $1975Be39$ in $(\alpha,4n\gamma), \ A_{2}=+0.27 \ 2, \ A_{4}=-0.06 \ 4 \ from \ 1976Sj01$ in $(^{6}Li,3n\gamma)$.
745.81	7/2-	337.47‡ 4	64 [‡] 3	408.37	7/2-	M1(+E2)	<0.4	0.378 22	$\begin{aligned} &\alpha(K)=0.305\ 20;\ \alpha(L)=0.0553\ 20;\ \alpha(M)=0.0131\ 5\\ &\alpha(N)=0.00340\ 11;\ \alpha(O)=0.00073\ 3;\ \alpha(P)=0.000100\ 5\\ &\text{Mult.:}\ \alpha(K)\exp=0.329\ 24,\ K:L:M=443\ 26:71\ 6:18.6\ 13\ (1974Vy01),\\ &\alpha(K)\exp=0.32\ 3\ (1973Jo14)\ \text{from}\ ^{209}\text{Rn}\ \varepsilon\ \text{decay},\ \alpha(K)\exp=0.33\ 3,\\ &A_2=+0.11\ 5,\ A_4=+0.05\ 8\ (1985Ra21)\ \text{from}\ (^3\text{He},3n\gamma). \end{aligned}$
		745.78 [‡] 4	100 [‡] 3	0	9/2-	M1(+E2)	<0.4	0.0459 25	$\alpha(K)=0.0374\ 21;\ \alpha(L)=0.0065\ 3;\ \alpha(M)=0.00153\ 7$ $\alpha(N)=0.000397\ 19;\ \alpha(O)=8.5\times10^{-5}\ 4;\ \alpha(P)=1.17\times10^{-5}\ 6$ Mult., $\delta:\ \alpha(K)\exp=0.036\ 3,\ K:L:M=75\ 6:13.1\ 17:3.7\ 11\ (1974Vy01),$ $\alpha(K)\exp=0.04\ 1\ (1973Jo14)\ from\ ^{209}Rn\ \varepsilon\ decay,\ \alpha(K)\exp=0.040\ 2$ (1985Ra21)\ from\ (^3He,3ny).
789.07	(9/2)-	380.7 ^{<i>a</i>} 2	100	408.37	7/2-	M1(+E2)	<0.4	0.273 16	$\begin{aligned} &\alpha(K) = 0.220 \ 14; \ \alpha(L) = 0.0397 \ 16; \ \alpha(M) = 0.0094 \ 4 \\ &\alpha(N) = 0.00243 \ 9; \ \alpha(O) = 0.000520 \ 21; \ \alpha(P) = 7.1 \times 10^{-5} \ 4 \\ &E_{\gamma}: \text{ weighted average of values from } (^{6}\text{Li},3n\gamma) \text{ and } (^{3}\text{He},3n\gamma). \\ &\text{Mult.: } \alpha(K) \exp = 0.24 \ 3, \ A_{2} = +0.02 \ 5, \ A_{4} = +0.01 \ 8 \ \text{from } 1985\text{Ra21 in} \\ &(^{3}\text{He},3n\gamma). \end{aligned}$

 $^{209}_{85}At_{124}-4$

					Ad	opted Levels, Ga	mmas (continued)	
						γ ⁽²⁰⁹ At) (c	ontinue	<u>d)</u>	
E _i (leve	el) J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^g	δ ^{ik}	α j	Comments
794.6	2 5/2-	386.43 ^{lcd} 7	61 ^{<i>l</i>} 4	408.37	7/2-	(M1)		0.276	
		794.68 7	100 7	0	9/2-	E2		0.01219	0.2 <i>I</i> from 1973Jo14 in ²⁰⁹ Rn ε decay. $\alpha(K)=0.00929$ <i>13</i> ; $\alpha(L)=0.00219$ <i>3</i> ; $\alpha(M)=0.000535$ <i>8</i> $\alpha(N)=0.0001384$ <i>20</i> ; $\alpha(O)=2.89\times10^{-5}$ <i>4</i> ; $\alpha(P)=3.69\times10^{-6}$ <i>6</i>
934.5	1? (7/2) ⁻	188.4 <i>3</i>	37 10	745.81	7/2-	[M1]		2.00	Mult.: $\alpha(K)\exp\approx 0.0077$ from 1974Vy01 in ²⁰⁹ Rn ε decay. $\alpha(K)=1.623$ 24; $\alpha(L)=0.289$ 5; $\alpha(M)=0.0685$ 10 $\alpha(K)=0.0177$ 3; $\alpha(Q)=0.00280$ 6; $\alpha(M)=0.00525$ 8
		357.38 15	100 30	577.08	$11/2^{-}$	[E2]		0.0796	$\alpha(K)=0.0463 7; \alpha(L)=0.0248 4; \alpha(M)=0.00642 9$
		526.8 5	63 20	408.37	7/2-	M1+E2	≈0.7	≈0.0907	$\alpha(N)=0.001661\ 24;\ \alpha(O)=0.000335\ 5;\ \alpha(P)=3.80\times10^{-5}\ 6$ $\alpha(K)\approx0.0726;\ \alpha(L)\approx0.01373;\ \alpha(M)\approx0.00328$ $\alpha(N)\approx0.000848;\ \alpha(O)\approx0.000180;\ \alpha(P)\approx2.44\times10^{-5}$ Mult : $\alpha(K)\exp\approx0.075\ (1974Vv01)$ from 209 Rn ε decay.
1081.2	2 (5/2,7/2) ⁻	≈147 ^b 286.59 10	<3 9.2 <i>30</i>	934.51? 794.62	(7/2) ⁻ 5/2 ⁻	[M1]		≈2.8 0.624	$\alpha(K)=0.506\ 8;\ \alpha(L)=0.0896\ 13;\ \alpha(M)=0.0212\ 3$ $\alpha(N)=0.00549\ 8;\ \alpha(O)=0.001176\ 17;\ \alpha(P)=0.0001624\ 23$
		672.84 [‡] 4	100 3	408.37	7/2-	E2(+M1)		0.0632	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0515 \ 8; \ \alpha(\mathrm{L}) = 0.00892 \ 13; \ \alpha(\mathrm{M}) = 0.00210 \ 3 \\ \alpha(\mathrm{N}) = 0.000545 \ 8; \ \alpha(\mathrm{O}) = 0.0001166 \ 17; \ \alpha(\mathrm{P}) = 1.614 \times 10^{-5} \\ 23 \end{array} $
									Mult.: α (K)exp=0.0115 24 (1974Vy01) from ²⁰⁹ Rn ε decay.
		1082 1	3.3 17	0	9/2-	[M1,E2]		0.0184	$\begin{array}{l} \alpha(\mathrm{K}) = 0.01500 \ 22; \ \alpha(\mathrm{L}) = 0.00256 \ 4; \ \alpha(\mathrm{M}) = 0.000603 \ 9 \\ \alpha(\mathrm{N}) = 0.0001561 \ 23; \ \alpha(\mathrm{O}) = 3.35 \times 10^{-5} \ 5; \ \alpha(\mathrm{P}) = 4.64 \times 10^{-6} \\ 7 \end{array}$
1093.1	3 (7/2) ⁻	684.75 <i>15</i>	100	408.37	7/2-	(E0+M1+E2)		0.121 21	α(K)=0.0492 7; α(L)=0.00851 12; α(M)=0.00201 3 α(N)=0.000520 8; α(O)=0.0001113 16; α(P)=1.541×10-5 22 Mult.: α(K)exp=0.100 17 (1974Vy01), α(K)exp=0.08 6 (1973Jo14) from 209Rn ε decay α(K)exp=0.100 17 is much larger than the M1 value suggesting a E0 component.
1097.7	4 (7/2)-	302.98 <i>13</i>	5.8 15	794.62	5/2-	M1(+E2)	<0.6	0.48 <i>6</i>	α: 0.121 21 from α(K)exp=0.100 17 and assumption that ce(K)/(γ+ce)=0.826 for M1 transition. α(K)=0.39 5; α(L)=0.073 5; α(M)=0.0174 9 α(N)=0.00449 23; α(O)=0.00096 6; α(P)=0.000130 10 Mult.,δ: α(K)exp=0.43 12 (1974Vy01), 0.5 2 (1973Jo14) from ²⁰⁹ Rn ε decay.

S

 $^{209}_{85}\mathrm{At}_{124}\text{-}5$

					Add	opted Levels,	Gammas	(continued)	
						γ (²⁰⁹ At	t) (continu	ed)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^g	δ ^{ik}	α^{j}	Comments
1097.74	(7/2)-	689.30 [‡] 6	2 44 22	408.37	7/2-	M1(+E2)	<0.4	0.056 3	
1121 11	$(5/2,7/2)^{-1}$	1097.5525	2.44 22	408.27	9/2 7/2-	$M1(\pm E2)$	<0.4	0.050.2	$\alpha(K) = 0.0405.22$, $\alpha(L) = 0.0071.4$, $\alpha(M) = 0.00167.8$
1131.11	(3/2,7/2)	722.14* 10	100	408.37	1/2	MI(+E2)	<0.4	0.050 5	α(K)=0.0403 23; α(L)=0.0071 4; α(M)=0.00167 8 α(N)=0.000432 20; α(O)=9.2×10-5 5; α(P)=1.28×10-5 7 Mult.,δ: α(K)exp=0.049 8 (1974Vy01) from 209Rn ε decay, α(K)exp=0.04 I (1985Ra21) from (3He,3nγ).
1214.28	11/2 ⁻ ,13/2 ⁻	489.2 [@] 2	50 [@] 10	725.07	13/2-	M1(+E2)	< 0.3	0.142 5	α (K)=0.115 5; α (L)=0.0204 6; α (M)=0.00481 14 α (N)=0.00125 4; α (O)=0.000267 8; α (P)=3.68×10 ⁻⁵ 12 Mult.: α (K)exp=0.14 2 (1985Ra21) from (³ He,3n γ).
		637.2 [@] 2	100 [@] 10	577.08	11/2-	M1(+E2)	<0.3	0.0707 25	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0575 \ 21; \ \alpha(\mathbf{L}) = 0.0100 \ 3; \ \alpha(\mathbf{M}) = 0.00237 \ 7 \\ &\alpha(\mathbf{N}) = 0.000614 \ 18; \ \alpha(\mathbf{O}) = 0.000131 \ 4; \ \alpha(\mathbf{P}) = 1.81 \times 10^{-5} \ 6 \\ &\mathbf{E}_{\gamma}: \ 635.3 \ 5 \ \text{from} \ (^{6}\text{Li}, 3n\gamma). \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \text{exp} = 0.062 \ 5, \ A_{2} = +0.02 \ 7, \ A_{4} = 0.0 \ 1 \\ &(1985\text{Ra}21) \ \text{from} \ (^{3}\text{He}, 3n\gamma). \end{aligned}$
		1214.3 [@] 2	50 [@] 10	0	9/2-				
1242.36	(13/2 ⁻)	517.2 [@] 2	17 [@] 3	725.07	13/2-	(E2)		0.0310	α (K)=0.0214 3; α (L)=0.00724 11; α (M)=0.00183 3 α (N)=0.000472 7; α (O)=9.68×10 ⁻⁵ 14; α (P)=1.164×10 ⁻⁵ 17
		665.3 [@] 1	100 [@] 6	577.08	11/2-	(M1)		0.0651	Mult.: $\alpha(K)\exp=0.03\ 2\ (1985Ra21)$ from (³ He,3n γ). $\alpha(K)=0.0530\ 8;\ \alpha(L)=0.00919\ 13;\ \alpha(M)=0.00217\ 3$ $\alpha(N)=0.000561\ 8;\ \alpha(O)=0.0001202\ 17;\ \alpha(P)=1.663\times10^{-5}$ 24 $E_{\gamma}:\ 664.2\ 5\ from\ (^{6}Li,3n\gamma).$ Mult.: $A_{2}=-0.07\ I,\ A_{4}=-0.02\ 2\ from\ ^{209}Bi(^{3}He,3n\gamma)$ (1985Ra21); $A_{2}=-0.25\ 6,\ A_{4}=-0.3\ 2\ from$
									206 Pb(6 Li,3n γ) (1976Sj01).
1269.84	(11/2,13/2)-	692.8 [@] 2	100	577.08	11/2-	M1+E2	1.3 3	0.032 6	α (K)=0.025 5; α (L)=0.0050 7; α (M)=0.00121 16 α (N)=0.00031 4; α (O)=6.6×10 ⁻⁵ 9; α (P)=8.8×10 ⁻⁶ 13 Mult., δ : α (K)exp=0.026 3 (1985Ra21) from (³ He,3n γ).
1321.57	17/2-	596.5 [#] 1	100	725.07	13/2-	E2		0.0224	$\begin{aligned} &\alpha(\text{K}) = 0.01609 \ 23; \ \alpha(\text{L}) = 0.00474 \ 7; \ \alpha(\text{M}) = 0.001182 \ 17 \\ &\alpha(\text{N}) = 0.000306 \ 5; \ \alpha(\text{O}) = 6.31 \times 10^{-5} \ 9; \ \alpha(\text{P}) = 7.76 \times 10^{-6} \ 11 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.017 \ 1, \ \text{A}_2 = +0.10 \ 1, \ \text{A}_4 = -0.01 \ 1 \\ &(1985\text{Ra21}) \ \text{from} \ (^3\text{He}, 3n\gamma), \ \alpha(\text{exp}) = 0.0222, \\ &\alpha(\text{K}) \text{exp}/\alpha(\text{L}) \text{exp} = 3.3 \ 3 \ \text{and} \ \text{A}_2 = -0.091 \ 12 \ (1975\text{Be39}) \\ &\text{from} \ (\alpha, 4n\gamma), \ \text{A}_2 = +0.3 \ 1, \ \text{A}_4 = -0.1 \ 1 \ (1976\text{Sj01}) \ \text{in} \\ &(^6\text{Li}, 3n\gamma). \end{aligned}$

					Adopted	l Levels, Gar	<mark>nmas</mark> (continu	(ed)	
						γ ⁽²⁰⁹ At) (co	ontinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^g	δ^{ik}	α^{j}	Comments
1339.57	(13/2,15/2) ⁻	614.5 [@] 2	100	725.07	13/2-	M1+E2	0.48 14	0.069 6	$\alpha(K)=0.056 5; \alpha(L)=0.0100 7; \alpha(M)=0.00238 15 \alpha(N)=0.00062 4; \alpha(O)=0.000131 9; \alpha(P)=1.80\times10^{-5} 13 Mult.,\delta: \alpha(K)exp=0.056 4, A_2=+0.06 8, A_4=-0.06 11 (1985Ra21) from (3He 3ny)$
1393.57	(13/2,15/2)-	668.5 [@] 1	100	725.07	13/2-	M1(+E2)	<0.2	0.0634 <i>13</i>	$\alpha(K)=0.0516 \ 11; \ \alpha(L)=0.00896 \ 17; \ \alpha(M)=0.00211 \ 4 \\ \alpha(N)=0.000548 \ 10; \ \alpha(O)=0.0001173 \ 22; \\ \alpha(P)=1.62\times10^{-5} \ 3 \\ Mult.: \ \alpha(K)exp=0.057 \ 4 \ (1985Ra21) \ from \\ (^{3}He, 3ny).$
1394.16	(7/2)-	296.6 4	33 5	1097.74	(7/2) ⁻	M1+E2	1.6 +7-4	0.26 6	$\alpha(K)=0.18 5; \ \alpha(L)=0.059 5; \ \alpha(M)=0.0147 9$ $\alpha(N)=0.00382 22; \ \alpha(O)=0.00078 6; \ \alpha(P)=9.5\times10^{-5}$ I0 Mult6: \alpha(K)exp=0.18 5 (1974Vy01) from ²⁰⁹ Rn \varepsilon
		599.87 12	59 6	794.62	5/2-	M1(+E2)	<0.3	0.083 3	decay. $\alpha(K)=0.0674\ 24;\ \alpha(L)=0.0118\ 4;\ \alpha(M)=0.00278\ 8$ $\alpha(N)=0.000721\ 21;\ \alpha(O)=0.000154\ 5;$ $\alpha(P)=2.13\times10^{-5}\ 7$ Mult., $\delta:\ \alpha(K)$ exp=0.072\ 15 (1974Vy01) from ²⁰⁹ Rn
		986.06 10	55 6	408.37	7/2-	E2(+M1)	>2	0.0095 16	ε decay. $\alpha(K)=0.0075 \ I3; \ \alpha(L)=0.00150 \ 20; \ \alpha(M)=0.00036 \ 5$ $\alpha(N)=9.3\times10^{-5} \ I2; \ \alpha(O)=2.0\times10^{-5} \ 3;$ $\alpha(P)=2.6\times10^{-6} \ 4$ Mult.: $\alpha(K)exp=0.0072 \ I8 \ (1974Vy01) \ from \ ^{209}Rn$
		1394.50 9	100 5	0	9/2-	E2(+M1)	>1.1	0.0054 <i>13</i>	ε decay. $\alpha(K)=0.0043 \ 11; \ \alpha(L)=0.00077 \ 17; \ \alpha(M)=0.00018 \ 4$ $\alpha(N)=4.7\times10^{-5} \ 10; \ \alpha(O)=1.00\times10^{-5} \ 22;$ $\alpha(P)=1.4\times10^{-6} \ 3; \ \alpha(IPF)=4.0\times10^{-5} \ 7$ Mult.,δ: $\alpha(K)exp=0.0041 \ 11 \ (1974Vy01)$ from $^{209}Rn \ \varepsilon$ decay.
1427.67	21/2-	106.1 [#] 1	100	1321.57	17/2-	E2		6.03	$\alpha(K)=0.393 \ 6; \ \alpha(L)=4.17 \ 7; \ \alpha(M)=1.119 \ 17 \ \alpha(N)=0.289 \ 5; \ \alpha(O)=0.0566 \ 9; \ \alpha(P)=0.00572 \ 9 \ B(E2)(W.u.)=3.21 \ 10 \ Mult.: from \ \alpha(exp) based on intensity balance and I(\gamma) in delayed spectrum in 1976Sj01 from (6Li,3n\gamma), A2=+0.08 \ 1, A4=+0.02 \ 2 \ (1985Ra21) \ from (3He,3n\gamma), \ \alpha(exp)=6.3 \ 8 \ (1975Be39) \ from (\alpha,4n\gamma).$
1516.90		247.1 [@] 2	33 [@] 7	1269.84	(11/2,13/2)-				

 \neg

 $^{209}_{85}\mathrm{At}_{124}$ -7

$\gamma(^{209}\text{At})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^g	δ ^{ik}	α^{j}	Comments
1516.90		$791.8^{@} 2$ $939.8^{@} 2$ $934.0^{@} 2$	$100^{@} 20$ $67^{@} 13$	725.07 577.08 725.07	13/2 ⁻ 11/2 ⁻				
1772.56	(15/2 ⁻)	530.2 [@] 1	100 [@] 5	1242.36	(13/2 ⁻)	M1+E2	0.57 5	0.097 4	α (K)=0.078 <i>3</i> ; α (L)=0.0143 <i>4</i> ; α (M)=0.00341 <i>9</i> α (N)=0.000883 <i>23</i> ; α (O)=0.000188 <i>5</i> ; α (P)=2.56×10 ⁻⁵ <i>8</i> Mult., δ : α (K)exp=0.078 <i>2</i> , A ₂ =-0.30 <i>3</i> , A ₄ =-0.00 <i>5</i> (1985Ra21) from (³ He,3n γ), A ₂ =-0.59 <i>15</i> , A ₄ =-0.05 <i>5</i> (1976Si01) in (⁶ Li,3n γ).
		1047.5 [@] 2	20 [@] 4	725.07	$13/2^{-}$				
1851.72	23/2-	424.05 [#] 10	100	1427.67	21/2-	M1		0.215	$\begin{aligned} &\alpha(\text{K}) = 0.1749\ 25;\ \alpha(\text{L}) = 0.0307\ 5;\ \alpha(\text{M}) = 0.00725\ 11\\ &\alpha(\text{N}) = 0.00188\ 3;\ \alpha(\text{O}) = 0.000402\ 6;\ \alpha(\text{P}) = 5.56 \times 10^{-5}\ 8\\ &\text{Mult.:}\ \alpha(\text{K}) \exp = 0.183,\ \text{A}_2 = -0.21\ 2,\ \text{A}_4 = -0.03\ 2\\ &(1985\text{Ra21})\ \text{from}\ (^3\text{He},3n\gamma),\ \alpha(\exp) = 0.23\ 2,\\ &\alpha(\text{K}) \exp/\alpha(\text{L}) \exp = 5.9\ 4\ \text{and}\ \text{A}_2 = -0.123\ 14\ (1975\text{Be39})\\ &\text{from}\ (\alpha,4n\gamma),\ \text{A}_2 = -0.26\ 12,\ \text{A}_4 = -0.4\ 3\ (1976\text{Sj}01)\\ &\text{from}\ (^6\text{Li},3n\gamma). \end{aligned}$
1907.27	(19/2)-	585.7 [@] 1	100	1321.57	17/2-	M1+E2	1.8 3	0.039 5	$\alpha(K)=0.030\ 5;\ \alpha(L)=0.0069\ 6;\ \alpha(M)=0.00167\ 13$ $\alpha(N)=0.00043\ 4;\ \alpha(O)=9.1\times10^{-5}\ 8;\ \alpha(P)=1.17\times10^{-5}\ 11$ Mult., δ : $\alpha(K)\exp=0.030\ 3,\ A_2=-0.33\ 4,\ A_4=+0.04\ 5$ (1985Ba21) from (³ He 3ny)
1953.52	7/2+	855.77 5	100 5	1097.74	(7/2)-	E1		0.00375	$\alpha(K)=0.00311 5; \ \alpha(L)=0.000492 7; \ \alpha(M)=0.0001148 16 \\ \alpha(N)=2.96\times10^{-5} 5; \ \alpha(O)=6.29\times10^{-6} 9; \ \alpha(P)=8.55\times10^{-7} \\ 12 \\ Mult.: \ \alpha(K)exp\approx0.0055 (1974Vy01), \ \alpha(K)exp<0.007 \\ (10721 10) f = \frac{209}{10} \\ \mu = 10000000000000000000000000000000000$
		872.40 15	14 5	1081.22	(5/2,7/2) ⁻	[E1]		0.00362	$\alpha(K)=0.00300 5; \alpha(L)=0.000475 7; \alpha(M)=0.0001107 16$ $\alpha(N)=2.85\times10^{-5} 4; \alpha(O)=6.07\times10^{-6} 9; \alpha(P)=8.25\times10^{-7}$
		1158.86 <i>10</i>	17.2 11	794.62	5/2-	[E1]		0.00219	$\alpha(K)=0.00181 \ 3; \ \alpha(L)=0.000282 \ 4; \ \alpha(M)=6.55\times10^{-5} \ 10 \ \alpha(N)=1.689\times10^{-5} \ 24; \ \alpha(O)=3.60\times10^{-6} \ 5; \ \alpha(P)=4 \ 93\times10^{-7} \ 7; \ \alpha(IPF)=5 \ 26\times10^{-6} \ 8$
		1207.4 4	5.0 5	745.81	7/2-	[E1]		0.00205	$\alpha(\mathbf{K}) = 0.001688 \ 24; \ \alpha(\mathbf{L}) = 0.000262 \ 4; \ \alpha(\mathbf{M}) = 6.09 \times 10^{-5} \ 9 \ \alpha(\mathbf{M}) = 1.569 \times 10^{-5} \ 22; \ \alpha(\mathbf{Q}) = 3.35 \times 10^{-6} \ 5;$
		1954.3 <i>10</i>	2.7 3	0	9/2-	[E1]		1.39×10 ⁻³	$\begin{aligned} \alpha(\text{R}) = 4.59 \times 10^{-7} \ 7; \ \alpha(\text{IPF}) = 1.64 \times 10^{-5} \ 3\\ \alpha(\text{K}) = 0.000753 \ 11; \ \alpha(\text{L}) = 0.0001145 \ 16; \\ \alpha(\text{M}) = 2.65 \times 10^{-5} \ 4\\ \alpha(\text{N}) = 6.84 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.464 \times 10^{-6} \ 21; \end{aligned}$
2075.87	(19/2 ⁻)	754.3 ^e 2	100	1321.57	17/2-	(M1)		0.0469	α (P)=2.02×10 ⁻⁷ 3; α (IPF)=0.000489 7 α (K)=0.0382 6; α (L)=0.00659 10; α (M)=0.001555 22

 ∞

From ENSDF

					Adopted	d Levels,	Gammas	(continued)	
						γ ⁽²⁰⁹ At)) (continue	ed)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^{π} N	Mult. ^g	δ ^{ik}	α^{j}	Comments
2096.26		212.8@ 2	100	1770 56 (15	<u> </u>				α (N)=0.000402 6; α (O)=8.62×10 ⁻⁵ 12; α (P)=1.193×10 ⁻⁵ 17 Mult.: α (K)exp=0.03 1 and A ₂ =-0.38 5, A ₄ =-0.01 8 for the 753.7+754.4 doublet (1985Ra21) in (³ He,3n γ).
2080.50 2135.81	(5/2,7/2)+	182.23 <i>1</i> 2	5.9 <i>13</i>	1953.52 7/2	//2) + [N	M 1]		2.20	$\alpha(K)=1.78 \ 3; \ \alpha(L)=0.318 \ 5; \ \alpha(M)=0.0753 \ 11 \ \alpha(N)=0.0195 \ 3; \ \alpha(O)=0.00417 \ 6; \ \alpha(P)=0.000577 \ g$
		1037.95 6	100 5	1097.74 (7/2	2) ⁻ E	1(+M2)	<0.09	0.00283 19	α(K)=0.00235 16; α(L)=0.00037 3; α(M)=8.7×10-5 7 α(N)=2.24×10-5 19; α(O)=4.8×10-6 4; α(P)=6.5×10-7 6 Mult.: α(K)exp=0.0020 4 (1974Vy01), α(K)exp<0.005 (1973Jo14) from 209Rn ε decay
		1054.52 7	39.3 21	1081.22 (5/2	2,7/2) ⁻ E	1(+M2)	<0.123	0.0029 4	$\alpha(K)=0.0024 \ 3; \ \alpha(L)=0.00039 \ 6;$ $\alpha(M)=9.0\times10^{-5} \ 13$ $\alpha(N)=2.3\times10^{-5} \ 4; \ \alpha(O)=5.0\times10^{-6} \ 7;$ $\alpha(P)=6.8\times10^{-7} \ 10$ Mult.: $\alpha(K)\exp=0.0029 \ 9 \ (1974Vy01)$ from $2^{20}PR = \alpha \ dacayi$
		1341.86 <i>13</i>	11.9 <i>10</i>	794.62 5/2	- [E	E1]		1.76×10 ⁻³	$\alpha(K) = 0.001408 \ 20; \ \alpha(L) = 0.000217 \ 3; \alpha(M) = 5.05 \times 10^{-5} \ 7 \alpha(N) = 1.301 \times 10^{-5} \ 19; \ \alpha(O) = 2.78 \times 10^{-6} \ 4; \alpha(P) = 3.82 \times 10^{-7} \ 6; \ \alpha(IPF) = 6.92 \times 10^{-5} \ 10$
		1727.5 ^{lc} 7	<2.6 ^l	408.37 7/2	- (E	E1]		1.43×10 ⁻³	$\alpha(\mathbf{K}) = 0.00923 \ I3; \ \alpha(\mathbf{L}) = 0.0001408 \ 20; \alpha(\mathbf{M}) = 3.27 \times 10^{-5} \ 5 \alpha(\mathbf{N}) = 8.42 \times 10^{-6} \ I2; \ \alpha(\mathbf{O}) = 1.80 \times 10^{-6} \ 3; \alpha(\mathbf{P}) = 2.49 \times 10^{-7} \ 4; \ \alpha(\mathbf{PF}) = 0.000325 \ 5$
2183.2	(23/2 ⁻)	755.5 ^{&} 5	100	1427.67 21/	2 ⁻ (N	M1) ^h		0.0467	$\alpha(\mathbf{K}) = 0.0380 \ 6; \ \alpha(\mathbf{L}) = 0.00657 \ 10; \alpha(\mathbf{M}) = 0.001548 \ 22 \alpha(\mathbf{N}) = 0.000401 \ 6; \ \alpha(\mathbf{O}) = 8.59 \times 10^{-5} \ 13; \alpha(\mathbf{P}) = 1.188 \times 10^{-5} \ 17$
2238.3	25/2-	386.6 ^{<i>d</i>} 2	100 6	1851.72 23/	2- M	I1+E2		0.276	α(K)=0.224 4; α(L)=0.0394 6; α(M)=0.00932 14 α(N)=0.00241 4; α(O)=0.000517 8; $α(P)=7.14\times10^{-5} 10$ Mult.: D+Q from γ(θ) (1990Mu04), Δπ=no required by level scheme. I _γ : from (α,4nγ).
		810.6 [#] 4	68 4	1427.67 21/	2- E2	2		0.01171	$\alpha(K)=0.00895 \ 13; \ \alpha(L)=0.00208 \ 3;$

					Adopted	l Levels, Gar	nmas (c	ontinued)	
						γ ⁽²⁰⁹ At) (co	ontinued)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. ^g	δ ^{ik}	α^{j}	Comments
									$\begin{aligned} &\alpha(M) = 0.000509 \ 8 \\ &\alpha(N) = 0.0001315 \ 19; \ \alpha(O) = 2.75 \times 10^{-5} \ 4; \\ &\alpha(P) = 3.52 \times 10^{-6} \ 5 \\ &\text{Mult.:} \ \alpha(K) \exp = 0.008 \ 2, \ A_2 = +0.21 \ 6, \ A_4 = +0.06 \\ &9 \ (1985Ra21) \ \text{in} \ (^3\text{He}, 3n\gamma). \\ &I_{\gamma}: \ \text{from} \ (\alpha, 4n\gamma), \ I(386.6\gamma)/I(810.6\gamma) = 5/6.7 \\ &\text{from} \ (^3\text{He}, 3n\gamma). \end{aligned}$
2402.8	(21/2 ⁻)	326.9 ^{&} 5	100	2075.87	(19/2 ⁻)	(M1) ^{<i>h</i>}		0.435	α (K)=0.353 <i>6</i> ; α (L)=0.0624 <i>10</i> ; α (M)=0.01475 22 α (N)=0.00382 <i>6</i> ; α (O)=0.000818 <i>12</i> ; α (P)=0.0001130 <i>17</i>
2415.01	5/2+,7/2+	279.20 10	77 8	2135.81	(5/2,7/2)+	M1(+E2)	<0.4	0.64 4	$\begin{aligned} \alpha(K) = 0.51 \ 4; \ \alpha(L) = 0.094 \ 3; \ \alpha(M) = 0.0224 \ 6 \\ \alpha(N) = 0.00579 \ 14; \ \alpha(O) = 0.00124 \ 4; \\ \alpha(P) = 0.000169 \ 7 \\ \text{Mult.:} \ \alpha(K) \exp = 0.62 \ 10 \ (1974 \text{Vy01}), \\ \alpha(K) \exp = 0.6 \ 3 \ (1973 \text{Jo14}) \ \text{from}^{209} \text{Rn} \ \varepsilon \\ \text{decay.} \end{aligned}$
		461.47 9	100 5	1953.52	7/2+	M1(+E2)	<0.6	0.154 18	$\alpha(K) = 0.125 \ 15; \ \alpha(L) = 0.0226 \ 19; \ \alpha(M) = 0.0054 \ 5 \\ \alpha(N) = 0.00139 \ 11; \ \alpha(O) = 0.000296 \ 25; \\ \alpha(P) = 4.1 \times 10^{-5} \ 4 \\ Mult.: \ \alpha(K)exp = 0.129 \ 11, \ K:L = 17.2 \ 10:2.97 \ 20 \\ (1974Vy01); \ \alpha(K)exp = 0.2 \ 1 \ (1973Jo14) \ from \\ ^{209}Rn \ \varepsilon \ decay.$
		1317.8 ^b 8	<7	1097.74	(7/2)-	[E1]		0.00180	$\alpha(K)=0.001452\ 21;\ \alpha(L)=0.000224\ 4;\alpha(M)=5.21\times10^{-5}\ 8\alpha(N)=1.343\times10^{-5}\ 19;\ \alpha(O)=2.87\times10^{-6}\ 4;\alpha(P)=3.94\times10^{-7}\ 6;\ \alpha(IPF)=5.75\times10^{-5}\ 9$
		1669.5 <i>10</i>	8.2 11	745.81	7/2-	[E1]		1.45×10 ⁻³	$\alpha(K) = 0.000977 \ 14; \ \alpha(L) = 0.0001493 \ 21; \alpha(M) = 3.46 \times 10^{-5} \ 5 \alpha(N) = 8.93 \times 10^{-6} \ 13; \ \alpha(O) = 1.91 \times 10^{-6} \ 3; \alpha(P) = 2.63 \times 10^{-7} \ 4; \ \alpha(IPF) = 0.000283 \ 4$
2429.32	29/2+	577.60 [#] 10	100	1851.72	23/2-	E3		0.0750	α(K)=0.0417 6; α(L)=0.0247 4; α(M)=0.00648 9 α(N)=0.001683 24; α(O)=0.000343 5; α(P)=4.00×10-5 6 B(E3)(W.u.)=22.17 25 Mult.: α(K)exp=0.055 3, A2=-0.25 1, A4=+0.01 1 (1985Ra21) from (3He,3nγ), α(exp)=0.07 1, α(K)exp/α(L)exp=2.0 2, A2=-0.133 22 (1975Be39) from (α,4nγ), for 577.07+577.60 doublet; T1/2=0.89 μs 3 implies mult=E3.
2516.70	(5/2 to 9/2) ⁺	380.83 10	100 31	2135.81	(5/2,7/2)+	M1(+E2)	≈0.6	≈0.229	$\alpha(K) \approx 0.182; \ \alpha(L) \approx 0.0355; \ \alpha(M) \approx 0.00849$

L.

					Adopted	Levels, G	ammas (conti	inued)
						$\gamma(^{209}\text{At})$ (continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. ^g	α^{j}	Comments
2516.70	(5/2 to 9/2) ⁺	1722.5 10	25 3	794.62	5/2-	[E1]	1.43×10 ⁻³	α (N) \approx 0.00220; α (O) \approx 0.000467; α (P) \approx 6.28×10 ⁻⁵ Mult.: α (K)exp \approx 0.18 (1974Vy01) from ²⁰⁹ Rn ε decay. α (K)=0.000927 <i>13</i> ; α (L)=0.0001415 <i>20</i> ; α (M)=3.28×10 ⁻⁵ <i>5</i> α (N)=8.46×10 ⁻⁶ <i>12</i> ; α (O)=1.81×10 ⁻⁶ <i>3</i> ; α (P)=2.50×10 ⁻⁷ <i>4</i> ; α (PE)=0.000321 5
		1771.2 5	34 2	745.81	7/2-	[E1]	1.42×10^{-3}	$\alpha(K)=0.000885 \ I3; \ \alpha(L)=0.0001350 \ I9; \ \alpha(M)=3.13\times10^{-5} \ 5$ $\alpha(N)=8.07\times10^{-6} \ I2; \ \alpha(O)=1.727\times10^{-6} \ 25; \ \alpha(P)=2.38\times10^{-7} \ 4; \ \alpha(IPF)=0.000357 \ 5$
2522.27	(5/2+,7/2+)	386.43 ^{<i>lc</i>} 7	l	2135.81	(5/2,7/2)+	(M1)	0.276	 α(K)=0.225 4; α(L)=0.0395 6; α(M)=0.00933 13 α(N)=0.00242 4; α(O)=0.000517 8; α(P)=7.15×10⁻⁵ 10 I_γ: ≤625 39 for this multiply placed transition if normalized to I(2114.05γ)=100 4. Mult.: α(K)exp=0.229 21 for a doublet from 1974Vy01, 0.2 1 from 1973Jo14 in ²⁰⁹Rn ε decay.
		1429 ^b 1	<30	1093.13	$(7/2)^{-}$			
2569.2	(3/2 ⁻ ,5/2,7/2)	1727.5 ^{<i>lcb</i>} 7 2114.05 20 1471.8 5 1635.0 10 1774 3 5	$<30^{l}$ 100 4 100 12 38 11 68 8	794.62 408.37 1097.74 934.51? 794.62	5/2 ⁻ 7/2 ⁻ (7/2) ⁻ (7/2) ⁻ 5/2 ⁻			
2581.13	(3/2,5/2,7/2)	$ \begin{array}{r} 1823^{b} \\ 1823^{b} \\ 2160.7 \\ 6 \\ 1186.91^{c} \\ 15 \\ 1500.2 \\ 4 \\ \qquad $	<75 60 8 100 8 21 3	745.81 408.37 1394.16 1081.22	$7/2^{-}$ $7/2^{-}$ $(7/2)^{-}$ $(5/2,7/2)^{-}$			
		1786.6 ⁰ 5	≈26	794.62	5/2-			
2605.4	(25/2+)	1836° 1 753.7° 2	<26 100	745.81 1851.72	//2 23/2 ⁻	(E1)	0.00475	α (K)=0.00393 <i>6</i> ; α (L)=0.000629 <i>9</i> ; α (M)=0.0001467 <i>21</i> α (N)=3.78×10 ⁻⁵ <i>6</i> ; α (O)=8.03×10 ⁻⁶ <i>12</i> ; α (P)=1.086×10 ⁻⁶ <i>16</i>
2(12.0	(25/2-)	≂.co.a# a	100	1051 50	22/2-		0.0450	Mult.: α (K)exp=0.03 <i>I</i> and A ₂ =-0.38 <i>5</i> , A ₄ =-0.01 8 for the 753.7+754.4 doublet (1985Ra21) in (³ He,3n γ).
2612.0	(25/2 ⁻)	760.3" 2	100	1851.72	23/2-	(M1)	0.0459	$\alpha(K)=0.03746; \alpha(L)=0.006469; \alpha(M)=0.00152222$ $\alpha(N)=0.0003946; \alpha(O)=8.44\times10^{-5}12; \alpha(P)=1.169\times10^{-5}17$ Mult.: $\alpha(K)\exp=0.051$ and $A_2=-0.386$, $A_4=-0.019$ for the 759.3+760.3 doublet (1985Ra21) in (³ He,3n γ), mult=D from $\gamma(\theta)$ (1990Mu04) in (α .4n γ).
2677.4		494.2 <mark>&</mark> 5	100	2183.2	(23/2-)			
2683.9	$(27/2^{-})$	445.6 <mark>&</mark> 5	100	2238.3	25/2-	(M1) ^{<i>h</i>}	0.188	$\alpha(K)=0.1532$ 22; $\alpha(L)=0.0268$ 4; $\alpha(M)=0.00634$ 9
								$\alpha(N) = 0.001641.24; \alpha(O) = 0.000351.5; \alpha(P) = 4.86 \times 10^{-5}.7$

 $^{209}_{85}\mathrm{At}_{124}\text{-}11$

Т

					Adopted Leve	ls, Gamma	s (continu	ued)
					γ (²⁰⁹	At) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^g	α^{j}	Comments
2689.92	(3/2 ⁻ ,5/2,7/2)	1608.5 <i>10</i> 2281 7 <i>4</i>	34 <i>5</i> 59 6	1081.22	$(5/2,7/2)^{-}$ $7/2^{-}$			
2712.9	(3/2 ⁻ ,5/2,7/2)	1616.0 <i>10</i> 1631.5 <i>10</i> 1778.2 ^c 5	100 <i>21</i> 88 <i>26</i>	1097.74 1081.22 934.51?	$(7/2)^{-}$ $(5/2,7/2)^{-}$ $(7/2)^{-}$			
2821.9	(5/2,7/2)	868.43 1741.0 <i>10</i> 1887.0 <i>10</i> 2412.5 6	$\approx 100^{f}$ 11 4 19 8 20 2 22	1953.52 1081.22 934.51?	7/2 ⁺ (5/2,7/2) ⁻ (7/2) ⁻ 7/2 ⁻			
3140.44	(5/2,7/2)	$\begin{array}{c} 2413.3 \ 6\\ 1186.91^{c} \ 15\\ 1746.1 \ 3\\ 2043.5^{b} \ 10\\ 2205.2 \ 10\\ 2346.0 \ 3\\ 2394 \ 7 \ 6\end{array}$	$ \begin{array}{c} 20.5 \ 25 \\ 100 \ 8 \\ 35 \ 3 \\ < 26 \\ 15 \ 3 \\ 28 \ 3 \\ 20 \ 3 \ 23 \\ \end{array} $	408.37 1953.52 1394.16 1097.74 934.51? 794.62 745.81	7/2 $7/2^+$ $(7/2)^-$ $(7/2)^-$ $(7/2)^-$ $5/2^-$ $7/2^-$			
3172.3	(3/2 ⁻ ,5/2,7/2)	1778.2 [°] 5 2074.5 3 2426.0 10	≤ 80 100 12 ≈ 34	1394.16 1097.74 745.81	$(7/2)^{-}$ $(7/2)^{-}$ $7/2^{-}$			
3188.6	(31/2+)	759.3 ^e 2	100	2429.32	29/2+	(M1) ^{<i>h</i>}	0.0461	$\alpha(K)=0.0376\ 6;\ \alpha(L)=0.00648\ 9;\ \alpha(M)=0.001528\ 22$ $\alpha(N)=0.000395\ 6;\ \alpha(O)=8.47\times10^{-5}\ 12;\ \alpha(P)=1.173\times10^{-5}\ 17$ Mult.: $\alpha(K)\exp=0.05\ I$ and $A_2=-0.38\ 6,\ A_4=-0.01\ 9$ for the 759.3+760.3 doublet (1985Ra21) in (³ He,3n\gamma), mult=D from $\gamma(\theta)$ (1990Mu04) in $(\alpha,4n\gamma)$.
3292.9 3388.44	(29/2 ⁻) (3/2 ⁻ ,5/2,7/2)	609.0 ^{&} 5 2290.5 3 2306.0 15	100 23 4 ≈9	2683.9 1097.74 1081.22	(27/2 ⁻) (7/2) ⁻ (5/2,7/2) ⁻			
		2453.5 [°] 5 2642.9 3 2981 0 10	<23 100 10	934.51? 745.81 408.37	$(7/2)^{-}$ $7/2^{-}$ $7/2^{-}$			I_{γ} : 19 4 from this doubly placed γ -ray.
3544.40	(5/2,7/2)	1027.55 20 1129 1 2150.0 10 2446.9 4 2463.7 6 2750.3 6 2798.1 10 3136.0 8	100 24 94 12 83 8 36 6 55 7 27 6 36 4 71 7	2516.70 2415.01 1394.16 1097.74 1081.22 794.62 745.81 408.37	7/2 to $9/2$) ⁺ $5/2^+, 7/2^+$ $(7/2)^-$ $(7/2)^-$ $(5/2, 7/2)^-$ $5/2^-$ $7/2^-$ $7/2^-$			
3551.4	(5/2,7/2,9/2)	1415.5 ^{<i>v</i>} 10 1597.4 6 2453.5 ^{<i>c</i>} 5 3143.7 8	≈ 110 100 12 <74 65 8	2135.81 1953.52 1097.74 408.37	$(5/2,7/2)^+$ $7/2^+$ $(7/2)^-$ $7/2^-$			I_{γ} : 62 <i>12</i> from this doubly placed γ -ray.

 $^{209}_{85}\mathrm{At}_{124}\text{-}12$

L.

Adopted Levels, Gammas (continued)								
γ ⁽²⁰⁹ At) (continued)								
E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^g	α^{j}	Comments
3592?	(33/2+)	405.4 ^{&m}	100	3188.6	(31/2 ⁺)	(M1) ^{<i>h</i>}	0.243	$\alpha(K)=0.197 \ 3; \ \alpha(L)=0.0347 \ 5; \ \alpha(M)=0.00819 \ 12 \ \alpha(N)=0.00212 \ 3; \ \alpha(O)=0.000454 \ 7; \ \alpha(P)=6.28\times10^{-5} \ 9$
3627.0	(3/2 ⁻ ,5/2,7/2)	1110.2 4 2233 ^b 1 2833.5 10 2881.0 10 3218.0 15	100 42 <83 ≈21 35 8 19 4	2516.70 1394.16 794.62 745.81 408.37	(5/2 to 9/2) ⁺ (7/2) ⁻ 5/2 ⁻ 7/2 ⁻ 7/2 ⁻			u(1)=0.00212 3, u(0)=0.000 15 17, u(1)=0.20710 - 3
3748.7	$(33/2^+)$	560.1 ^{&} 5	100	3188.6	$(31/2^+)$			
3753.7	(5/2,7/2)	202.3 ^b 4 1338.0 8 2656.4 4 3007.5 6	<69 100 <i>13</i> 39 8 35 4	3551.4 2415.01 1097.74 745.81	(5/2,7/2,9/2) $5/2^+,7/2^+$ $(7/2)^-$ $7/2^-$			
3812.6	(33/2+)	624.0 ^{&} 5	100	3188.6	$(31/2^+)$	(M1) ^{<i>h</i>}	0.0770	α (K)=0.0628 9; α (L)=0.01089 16; α (M)=0.00257 4 α (N)=0.000665 10; α (O)=0.0001425 21; α (P)=1.97×10 ⁻⁵ 3
3899.1	(33/2+)	710.5 ^{&} 5	100	3188.6	$(31/2^+)$	(M1) ^{<i>h</i>}	0.0548	α (K)=0.0447 7; α (L)=0.00772 11; α (M)=0.00182 3 α (N)=0.000471 7; α (O)=0.0001010 15; α (P)=1.397×10 ⁻⁵ 20
4176	(35/2+)	583.7 ^{&m} 5	100	3592?	(33/2 ⁺)	(M1) ^{<i>h</i>}	0.0919	α (K)=0.0748 <i>11</i> ; α (L)=0.01301 <i>19</i> ; α (M)=0.00307 <i>5</i> α (N)=0.000795 <i>12</i> ; α (O)=0.0001702 <i>25</i> ; α (P)=2.35×10 ⁻⁵ <i>4</i>
4376.6		564.0 ^{&} 5	100	3812.6	$(33/2^+)$			
4506?	(35/2+)	759.0 ^{em}	100	3748.7	(33/2+)	(M1) ^{<i>h</i>}	0.0461	$\alpha(K)=0.0376 \ 6; \ \alpha(L)=0.00649 \ 9; \ \alpha(M)=0.001529 \ 22$ $\alpha(N)=0.000396 \ 6; \ \alpha(O)=8.48\times10^{-5} \ 12; \ \alpha(P)=1.174\times10^{-5} \ 17$ Mult.: $\alpha(K)\exp=0.05 \ 1$ and $A_2=-0.38 \ 6, \ A_4=-0.01 \ 9$ for the 759.3+760.3 doublet (1985Ra21) in (³ He,3n\gamma), mult=D from $\gamma(\theta)$ (1990Mu04) in (α .4n γ).
4696.9		797.8 <mark>&</mark>	100	3899.1	$(33/2^+)$			
 [†] From [‡] Weig [#] Weig [@] From [@] From ^a Weig ^b Assig ^c Doub ^d Doub ^e Doub 	²⁰⁹ Rn ε decay, the hted average of whited average of w (³ He,3nγ). (α ,4nγ). hted average of w mment to ²⁰⁹ At (lets at 386, 1187 let at 386 from (lets at 754 from	unless otherwise values from 209 R values from (³ He values from (⁶ Li from ε decay) n , 1727, 1778 an ³ He,3n γ). (³ He,3n γ) and (e noted. en ε decay e,3n γ) and anot definite d 2453 fro $(\alpha,4n\gamma)$, at	and (³ He,3 (α ,4n γ). (³ He,3n γ). ly establish m ²⁰⁹ Rn ε 759 from (nγ). ed. decay. α ,4nγ).			

²⁰⁹₈₅At₁₂₄-13

 $\gamma(^{209}\text{At})$ (continued)

- ^f Transition shown on drawing in 209 Rn ε decay (1974Vy01), but not in authors' table of gammas. Intensity deduced by evaluator based on intensity balance at 2822 level. The deduced value is thus actually a lower limit; however, 1974Vy01 show log ft>8.5 to the 2822 level; thus, $I(\varepsilon)<0.03\%$.
- ^g From ce data in ²⁰⁹Rn ε decay and (³He,3n γ), unless otherwise noted.

^{*h*} From 1990Mu04 in (α ,4n γ), based on $\gamma(\theta)$. ^{*i*} From measured ce data in ²⁰⁹Rn ε decay and (³He,3n γ) using the BrIccMixing program, unless otherwise noted.

^{*j*} Additional information 6.

^k Additional information 7.

¹ Multiply placed with undivided intensity.

^{*m*} Placement of transition in the level scheme is uncertain.

From ENSDF

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{209}_{85}{\rm At}_{124}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{209}_{85}At_{124}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

i

19

 $^{209}_{85}{\rm At}_{124}\text{-}19$

From ENSDF

Adopted Levels, Gammas