²⁰⁹Bi(α,4nγ) 1975Be39,1990Mu04

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	J. Chen [#] and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013					

1975Be39: E=42-51 MeV α particles were produced from the Stockholm 225-cm cyclotron. Targets were metallic Bi. γ-rays were detected by a coaxial Ge(Li) detector (θ=90°-150°) and conversion electrons were detected by a Si(Li) detector in a spectrometer (FWHM=2.1 keV at about 500 keV). Measured Eγ, Iγ, γ(q), γ(t), E(ce), I(ce), pulsed beam. Deduced levels, J^π, γ-branchings, γ-ray transition multipolarities, conversion coefficients, half-lives, g-factors. ce data of 1975Be39 also reported in 1975Li12.

1990Mu04: E=44-54 MeV α particles were produced from the Variable Energy Cyclotron at Calcutta. An extremely pure rolled Bi target was use. γ -rays were detected by two N-type Ge detectors at θ =90°, 106°, 120° and 130°. Measured E γ , I γ , γ (q), $\gamma\gamma$ -coin. Deduced levels, J^{π}, γ -ray transition multipolarities.

Others:

1990Ha30,1991Sc15: α beams were produced at the cyclotron Cyclone at Louvain-la-neuve at Belgium. Detectors were placed in 0° and 90°. Measured quadrupole moments using the Level Mixing spectroscopy (LEMS) method.

1983Ma08: E= 60 MeV α particles were produced from the VICKSI accelerator at the Hahn-Meitner-Institut. γ -rays were detected with Ge(Li) detectors (θ =0° to 90°). Measured E γ , $\gamma(\theta$,H,t). Deduced half-lives, quadrupole moments of isomers.

1983Ha51: E=45 MeV α particles were produced from the cyclotron at Karlsruhe. A target of≈2 mg/cm² Bi evaporated onto a 4 mg/cm² Cu foil was used. Measured Eγ, Iγ, γ(θ). Deduced levels, quadrupole moment ratio of Q(²⁰⁹At)/Q(²¹⁰At).

Additional information 1.

²⁰⁹At Levels

Additional information 2.

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0	9/2-		J^{π} : from Adopted Levels. Q: Q(²⁰⁹ At)/Q(²¹⁰ At)=1.47 7 (1983Ha51). configuration= π (1h _{0/2}) ⁺¹ .
577.07 12	11/2 ^{-#}		configuration= $\pi(1h_{9/2})^{+1} \otimes 2^+$.
725.08 10	13/2-#		configuration= $\pi(1h_{9/2})^{+1}\otimes 2^+$.
1321.59 14	17/2 ^{-#}		configuration= $\pi(1h_{9/2})^{+3}$.
1427.69 17	21/2 ^{-#}	25 ns 1	g=0.88 6 (1975Be39) Q=0.78 8 (1983Ma08) Q: measured using the TDPAD method (1983Ma08). T _{1/2} : weighted average of 25 ns <i>l</i> from 106 γ (t), 148 γ (t), 577 γ (t), 596 γ (t) 725 γ (t) in 1975Be39 and 24 ns 2 from 596 γ (t) and 725 γ (t) in 1983Ma08. g-factor: from $\gamma(\theta, H, t)$ using the TDPAD method with Knight-shift and diamagnetic shielding corrections applied (1975Be39). configuration= π (1h ₀ γ) ⁺³ .
1851.78 20 1907.5 6 2075.6 6 2183 2 6	23/2 ^{-#} 19/2 ⁻ (19/2 ⁻)		configuration $\pi(1h_{9/2}^2)^{+3}$.
2238.2 4	25/2-		
2402.3 8 2429.2 3	29/2+#	0.794 μs 20	g=1.061 <i>10</i> Q=1.50 <i>15</i> (1983Ma08) Q: measured using the TDPAD method (1983Ma08). T _{1/2} : from 424γ(t) in 1983Ma08. Other: 0.88 μs <i>10</i> from 577γ(t), 596γ(t), and 725γ(t) in 1975Be39. configuration= $\pi(1h_{9/2}^2 1i_{13/2}^1)^{+3}$. g-factor: weighted average of 1.061 <i>10</i> (1987Ca23) and 1.060 <i>20</i> (1975Be39) using the TDPAD method.

Continued on next page (footnotes at end of table)

209 Bi(α ,4n γ) 1975Be39,1990Mu04 (continued)

²⁰⁹At Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
2605.8 6	25/2+	
2611.4 3	25/2-	
2677.4 8		
2683.8 7	$(27/2^{-})$	
3188.2 4	31/2+	
3292.8 8	$(29/2^{-})$	
3592?	33/2+	E(level): the relative order of the 405.4 γ and 583.7 γ has not been established. These cascade transitions could define a level at 3771 instead of at 3592.
3748.3 6	$(33/2^+)$	
3812.2 6	$(35/2^+, 33/2^+)$	
3898.7 6	$33/2^{+}$	
4176	35/2+	
4376.2 8		
4506?		
4696.5 8		

[†] From a least-squares fit to γ-ray energies.
[‡] From 1990Mu04, except where noted otherwise.
[#] Assignments are also from 1975Be39 based on stretched-cascade arguments and the absence or presence of crossover transitions, and the γ -ray transition multipolarity arguments.

$$\gamma$$
⁽²⁰⁹At)

Additional information 3.

E _γ ‡	Ιγ @	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^a	α^{\dagger}	Comments
106.1 [#] 1	11.8#	1427.69	21/2-	1321.59	17/2-	E2 ^b	6.03	α (K)=0.393 6; α (L)=4.17 7; α (M)=1.119 17; α (N+)=0.351 6 α (N)=0.289 5; α (O)=0.0566 9; α (P)=0.00572 9 Mult.: α (exp)=6.3 8 from an intensity balance at the 1321.6 level using delayed intensities (1975Be39).
148.0 [#] 1	5.9 [#]	725.08	13/2-	577.07	11/2-	M1 ^b	3.96	$\alpha(K)=3.21 5; \alpha(L)=0.574 9; \alpha(M)=0.1359 20; \alpha(N+)=0.0438 7$ $\alpha(N)=0.0352 5; \alpha(O)=0.00754 11; \alpha(P)=0.001041 15$ Mult.: $\alpha(\exp)=3.9 5, A_2=-0.044 43$ from 1975Be39
326.9 5	3.8 2	2402.5		2075.6	$(19/2^{-})$	M1	0.435	1)/02009.
386.5 5	10.7 6	2238.2	$25/2^{-}$	1851.78	23/2-	M1+E2	0.17 11	
405.4 ^d 5	9.2 10	3592?	$33/2^{+}$	3188.2	$31/2^+$	M1	0.243	
424.1 [#] <i>I</i>	62 [#]	1851.78	23/2-	1427.69	21/2-	M1 ^b	0.215	$\alpha(K)=0.1749\ 25;\ \alpha(L)=0.0307\ 5;\ \alpha(M)=0.00725\ 11;\ \alpha(N+)=0.00233\ 4$ $\alpha(N)=0.00188\ 3;\ \alpha(O)=0.000402\ 6;\ \alpha(P)=5.55\times10^{-5}\ 8$ Mult.: $\alpha(\exp)=0.23\ 2$ from intensity balance in delayed spectrum, $\alpha(K)\exp/\alpha(L)\exp=5.9\ 4,\ A_2=-0.123\ 14$ from 1975Be39.
445.6 5	7.8 4	2683.8	$(27/2^{-})$	2238.2	25/2-	M1	0.188	

Continued on next page (footnotes at end of table)

			209	Bi (α ,4 n γ)	1975Be39,1990I				
	$\gamma(^{209}\text{At})$ (continued)								
E _γ ‡	Ι _γ @	E _i (level)	\mathbf{J}_i^π	E_f	${f J}_f^\pi$	Mult. ^a	α^{\dagger}	Comments	
494.2 5 560.1 5 564.0 5	3.5 2 6.1 5 5.6 5	2677.4 3748.3 4376.2	(33/2+)	2183.2 3188.2 3812.2	31/2 ⁺ (35/2 ⁺ ,33/2 ⁺)	· h			
577.0" 2	40"	577.07	11/2-	0.0	9/2-	MI ^D	0.0947	$\alpha(K)=0.0771 11;$ $\alpha(L)=0.01341 19;$ $\alpha(M)=0.00317 5;$ $\alpha(N+)=0.001019 15$ $\alpha(N)=0.000820 12;$ $\alpha(O)=0.0001755 25;$ $\alpha(P)=2.43\times10^{-5} 4$ Mult.: $\alpha(K)\exp/\alpha(L)\exp=2.0$ 2 and A ₂ =-0.133 22 for the 577.0+577.4 doublet from 1975Be39.	
577.4 [#] 2	50 [#]	2429.2	29/2+	1851.78	23/2-	E3 ^b	0.0750	$\alpha(K)=0.0417\ 6;\ \alpha(L)=0.0248$ 4; $\alpha(M)=0.00649\ 10;\ \alpha(N+)=0.00207\ 3$ $\alpha(N)=0.001686\ 24;\ \alpha(O)=0.000343\ 5;\ \alpha(P)=4.01\times10^{-5}\ 6$ Mult.: $\alpha(exp)=0.07\ 1$ from intensity balances, and also $\alpha(K)exp/\alpha(L)exp=2.0\ 2$ and $A_2=-0.133\ 22$ for the 577.0+577.4 doublet from 1975Be39.	
583.7 ^d 5 585.9 5	11.5 7 7.2 5	4176 1907.5	35/2 ⁺ 19/2 ⁻	3592? 1321.59	33/2 ⁺ 17/2 ⁻	M1 M1(+E2)	0.0919 0.06 <i>4</i>		
596.5 [#] 1	100	1321.59	17/2-	725.08	13/2-	E2	0.0224	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01609 \ 23; \\ &\alpha(\mathbf{L}) = 0.00474 \ 7; \\ &\alpha(\mathbf{M}) = 0.001182 \ 17; \\ &\alpha(\mathbf{N}+) = 0.000377 \ 6 \\ &\alpha(\mathbf{N}) = 0.000306 \ 5; \\ &\alpha(\mathbf{O}) = 6.31 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{C}) = 6.31 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{C}) = 7.76 \times 10^{-6} \ 11 \\ \mathbf{Mult.} \ \alpha(\exp) = 0.0222, \\ &\alpha(\mathbf{K}) \exp/\alpha(\mathbf{L}) \exp = 3.3 \ 3, \\ &A_2 = -0.091 \ 12 \ \text{from} \\ &1975\text{Be}39. \end{aligned}$	
609.0 <i>5</i> 624.0 <i>5</i>	7.3 <i>10</i> 6.4 <i>4</i>	3292.8 3812.2	$(29/2^{-})$ $(35/2^{+},33/2^{+})$	2683.8) 3188.2	(27/2 ⁻) 31/2 ⁺	M1	0.0770		
725.1 [#] 1	3.5 3 82.5 [#]	725.08	33/2 ⁺ 13/2 ⁻	5188.2 0.0	51/2" 9/2 ⁻	E2 ^b	0.01471	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01104 \ 16; \\ &\alpha(\mathbf{L}) = 0.00277 \ 4; \\ &\alpha(\mathbf{M}) = 0.000682 \ 10; \\ &\alpha(\mathbf{N}+) = 0.000218 \ 3 \\ &\alpha(\mathbf{N}) = 0.0001763 \ 25; \\ &\alpha(\mathbf{O}) = 3.67 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{C}) = 4.63 \times 10^{-6} \ 7 \\ &\text{Mult.:} \ \alpha(\exp) = 0.016 \ 3, \\ &\alpha(\mathbf{K}) \exp/\alpha(\mathbf{L}) \exp = 4.5 \ 4, \\ &A_2 = +0.091 \ 8 \ \text{from } 1975b39. \\ &\gamma\text{-branching:} \\ &I(148\gamma)/I(725\gamma) = 0.072 \ \text{from singles spectrum; } 0.051 \end{aligned}$	

Continued on next page (footnotes at end of table)

				²⁰⁹ Bi (α,4ι	η γ) 197	5Be39,199	0 <mark>0Mu04</mark> (cor	ntinued)	
$\gamma(^{209}\text{At})$ (continued)									
E_{γ}^{\ddagger}	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^a	α^{\dagger}	Comments	
								from delayed spectrum; 0.054 <i>18</i> from authors' deduced $I(\gamma+ce)$ for the 725.1 γ and 577.0 γ based on intensity-balance arguments, the requirement $I(\gamma+ce)$ 148.0 γ)= $I(\gamma+ce)$ 577.0 γ), and adopted α' s.	
754.0 [°] 5	18 ^c 2	2075.6	$(19/2^{-})$	1321.59	$17/2^{-}$				
754.0 [°] 5	18 ^c 2	2605.8	$25/2^+$	1851.78	23/2-				
755.5 5	11 <i>1</i>	2183.2		1427.69	$21/2^{-}$	M1	0.0467		
759.0 [°] 2	41 ^{c&} 4	3188.2	$31/2^{+}$	2429.2	$29/2^{+}$	M1	0.0461		
759.0 ^{cd} 2	41 ^{c&} 4	4506?		3748.3	$(33/2^+)$	M1	0.0461		
759.6 2	22 2	2611.4	$25/2^{-}$	1851.78	23/2-	M1	0.0460		
797.8 <i>5</i>	3.2 2	4696.5		3898.7	$33/2^{+}$				
810.4 5	7.3 4	2238.2	$25/2^{-}$	1427.69	$21/2^{-}$	E2	0.01171		

[†] Additional information 4.

[‡] From 1990Mu04. The evaluators have assigned uncertainties of 0.2 keV for strong γ -rays and 0.5 keV for weak γ -rays based on the γ -spectrum in 1990Mu04, unless otherwise noted.

[#] From 1975Be39, γ -ray intensities normalized to I(596 γ)=100.

[@] From 1990Mu04, normalized to I(596 γ)=100, unless otherwise noted.

& From intensity balance at the 3747 level, $I\gamma(759\gamma$ from 4506) is expected to be <66. The major fraction of the intensity of this transition thus appears to be from the 3187 level (1990Mu04).

^{*a*} From 1990Mu04, except where noted otherwise. Authors' assignments are based on $\gamma(\theta)$. Since the basis for distinguishing M1 from E1, etc., is not stated, the assignments are tentative.

^b From ce data in 1975Be39.

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain.

