206 Pb(6 Li,3n γ) 1976Sj01

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	J. Chen $^{\#}$ and F. G. Kondev	NDS 126, 373 (2015)	30-Sep-2013					

1976Sj01: E=29-34 MeV ⁶Li beams were produced from the Stony Brook tandem Van de Graaff accelerator. Targets were enriched metallic foils of ²⁰⁶Pb (99%). γ-rays were detected by several Ge(Li) detectors (≈12% efficiency and FWHM=2-3 keV at E=1.33 MeV; FWHM=0.5 keV for E γ <150 keV). Measured E γ , I γ , $\gamma(\theta,H,t)$, $\gamma\gamma$ -coin. Deduced levels, J^{π}, γ -multipolarities, g-factor, $T_{1/2}$, transition strengths.

²⁰⁹At Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
0.0	9/2-		J^{π} : from Adopted Levels.
408.7 5	$(7/2^{-})^{@}$		
576.7 4	$11/2^{-}$		
724.7 4	13/2-		
746.3 7	$(7/2^{-})^{@}$		
789.0 7	$(9/2)^{-}$		J^{π} : from Adopted Levels.
1212.0 7	_		
1240.9 7	$(13/2^{-})^{@}$		
1321.0 7	$17/2^{-}$		
1427.1 7	21/2-	29 ns 2	$g=+0.95\ 2$
			g: from γ (H,t) using TDPAD (1976Sj01), corrected for diamagnetism and Knight shift. T _{1/2} : from 596.3 γ (t), 576.6 γ (t) and 724.8 γ (t) (1976Sj01).
1771.5 8	$(15/2^{-})^{@}$		
1851.0 9	$(23/2^{-})^{@}$		
2428.0 13	$(29/2^+)^{@}$	0.68 µs 8	$T_{1/2}$: from 423.9 γ (t) (1976Sj01).

 † From a least-squares fit to $\gamma\text{-ray energies}.$

^{\ddagger} T_{1/2} \leq 5 ns for all excited levels except the 1427 and 2428.

[#] rom 1976Sj01, based on deduced γ -ray transition multipolarities, unless otherwise noted. [@] Tentative assignment by 1978Sj01.

$\gamma(^{209}{\rm At})$

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^{a}	$I_{(\gamma+ce)}$	Comments
106.1 2	5.8 12	1427.1	21/2-	1321.0	17/2-	E2	6.03 10	41 [‡] 8	ce(K)/(γ +ce)=0.0559 <i>11</i> ; ce(L)/(γ +ce)=0.593 <i>7</i> ; ce(M)/(γ +ce)=0.159 <i>4</i> ; ce(N+)/(γ +ce)=0.0499 <i>11</i> ce(N)/(γ +ce)=0.00805 <i>18</i> ; ce(P)/(γ +ce)=0.00805 <i>18</i> ; ce(P)/(γ +ce)=0.00813 <i>18</i> I _{γ} : from I(γ +ce) and theoretical conversion coefficient.
147.9 2	9.9 20	724.7	13/2-	576.7	11/2-	(M1)	3.97	49 [‡] 10	Mult.: from conversion coefficient based on intensity balance and $I(\gamma)$ in delayed spectrum (1976Sj01). ce(K)/(γ +ce)=0.647 6; ce(L)/(γ +ce)=0.1158 20;
									$ce(L)/(\gamma+ce)=0.1158\ 20;$ $ce(M)/(\gamma+ce)=0.0274\ 5;$ $ce(N+)/(\gamma+ce)=0.00883\ 17$

Continued on next page (footnotes at end of table)

²⁰⁶Pb(⁶Li,3nγ) **1976Sj01** (continued)

$\gamma(^{209}\text{At})$ (continued)

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
							ce(N)/(γ +ce)=0.00710 14; ce(O)/(γ +ce)=0.00152 3; ce(P)/(γ +ce)=0.000210 4 I _{γ} : from I(γ +ce) and theoretical conversion coefficient assuming mult=M1.
							multipolarity (1976Sj01).
337.6 5		746.3	$(7/2^{-})$	408.7	$(7/2^{-})$		
380.3 5	18 2	789.0	$(9/2)^{-}$	408.7	$(7/2^{-})$	(M1+E2) ^{&}	$A_2 = -0.07 \ 9, A_4 = -0.4 \ 3 \ (1976Sj01).$
^x 386.9 5							
408.7 5	36 4	408.7	$(7/2^{-})$	0.0	9/2-		
423.9 5	18 2	1851.0	$(23/2^{-})$	1427.1	$21/2^{-}$	(M1+E2)	Mult.: $A_2 = -0.26 \ 12$, $A_4 = -0.4 \ 3 \ (1976Sj01)$.
530.6 5	8 1	1771.5	$(15/2^{-})$	1240.9	$(13/2^{-})$	(M1+E2) ^{&}	Mult.: $A_2 = -0.59 \ 15$, $A_4 = -0.05 \ 5 \ (1976Sj01)$.
576.6 5	100 10	576.7	11/2-	0.0	9/2-	(M1+E2)	Mult.: $A_2 = -0.40$ 32, $A_4 = -0.05$ 6 for 576.6 γ +577 γ , implies a dipole component (1976Sj01).
577 1	6.0 6	2428.0	$(29/2^+)$	1851.0	$(23/2^{-})$		
596.3 5	70 21	1321.0	$17/2^{-}$	724.7	$13/2^{-}$	E2 [@]	Mult.: $A_2 = +0.3 I$, $A_4 = -0.1 I$ (1976Sj01).
635.3 5		1212.0	,	576.7	$11/2^{-}$		
664.2 5	31 3	1240.9	$(13/2^{-})$	576.7	$11/2^{-}$	(M1+E2) ^{&}	Mult.: $A_2 = -0.25 6$, $A_4 = -0.3 2$ (1976Sj01).
724.8 5	100	724.7	13/2-	0.0	9/2-	E2 [@]	Mult.: $A_2 = +0.27 2$, $A_4 = -0.06 4$ (1976Sj01).

 † From prompt spectrum normalized to 100 for the 724.8 γ , unless otherwise noted.

[‡] Obtained by 1976Sj01 from intensity balance in delayed spectrum.

[#] From 1976Sj01 based on $\gamma(\theta)$, unless otherwise noted.

[@] Stretched quadrupole transition based on $\gamma(\theta)$ data. The lifetime limits rule out mult=M2.

& $\gamma(\theta)$ suggests D+Q, but M1/E2 assignment is most probable based on the lifetime limits.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*x*} γ ray not placed in level scheme.

²⁰⁹₈₅At₁₂₄