$^{212}\text{Bi}~\alpha$ decay (60.55 min)

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007

Parent: ²¹²Bi: E=0.0; $J^{\pi}=1^{(-)}$; $T_{1/2}=60.55 \text{ min } 6$; $Q(\alpha)=6207.26 3$; % α decay=35.94 6

²¹²Bi- $\Re \alpha$ decay: Weighted average of 36.00 *3* (1965Wa09), 35.81 *4* (1962Be09), and 35.96 *6* (1960Sc07) based on

 $I\alpha(^{212}Bi)/[I\alpha(^{212}Bi)+I\alpha(^{212}Po)]$. Others: 1961Ba12, 1961Fe04, 1958Ev80, 1958Pr70, 1956Se17, 1953Ma26 and 1950To63. This data set is updated from 1992Ar05. The $Q(\alpha)$ value has been replaced by the value from 2003Au03. The following are J^{π}

changes: $J^{\pi}(g.s.)$ from $5^{(+)}$ to 5^+ , $J^{\pi}(40)$ from $4^{(+)}$ to 4^+ , $J^{\pi}(328)$ from $5^{(+)}$ to 5^+ , $J^{\pi}(473)$ from $(3^+,4^+,5^+)$ to (4^+) , and $J^{\pi}(493)$ from $(3^+,5^+)$ to $(3)^+$. The mult data have been reanalyzed using the theoretical values of 2005KiZT.

²⁰⁸Tl Levels

 $(\gamma)(\gamma)$: 1958De25.

(α)(γ): 1955Ni19, 1962Be09, 1967Be19.

 $(\alpha)(\gamma)(\theta)$: 1) 6051 α - 40 γ data of 1955We10, 1956Fi41, 1956Ho11, and 1968Do17 are consistent with the spin sequences 1-3-4, and 1-4-5. Not consistent with 1-5-5, 1-4-4, 1-5-4, nor 1-6-5. Not consistent with J(²¹²Bi)=0. The evaluator assumes that the 39.9 γ is M1 (δ <0.02 based on ce data). 2) 5768 α – 288 γ and 5768 α – 328 γ data of 1966KIZZ are consistent with the spin sequences 1(L,L+2)J(D,Q)4 and 1(L,L+2)J(D,Q)5, respectively, for J(328 level)=5, $L(\alpha)=5$, $\delta(288\gamma)=+0.067$ 6, $\delta(328\gamma)=+0.075$. Other: 1963Co28. 3) 5625 α - 432 γ and 5625 α - 472 γ data of 1966KIZZ are not consistent with J(472 level)=3 to 6, the maximum J-range allowed by ce data. Authors' analysis, which yields J=4, $\delta(432\gamma)$ =+1.7 to 2.6, $\delta(472\gamma)$ =-14 to -8, $\delta(\alpha)$ L=5/L=3)=+1, appears to Be In error. In particular, the experimental A₄ terms have the opposite sign from the theoretical values (for all values of L=5, L=3 α -mixing), whereas 1966KIZZ show the theoretical A₄ values changing signs with α mixing (the authors' term linear In $\delta(\alpha)$ appears to Be \approx 5 times too large). The lack of agreement In possible J-values between the Ag(θ) and ce data might Be due to the inability to resolve the weak 5626 α from the 5607 α In the α gate and the weak 432 and 472 γ 's from 452 γ In the coincidence spectrum. 4) 5606 α – 452 γ and 5606 α – 492 γ data of 1966KIZZ are consistent with the spin sequences 1(L,L+2)J(D,Q)4 and 1(L,L+2)J(D,Q)5, respectively, for J(492 level)=3, $L(\alpha)=3$, $\delta(453\gamma)=-0.048$ 8 and for J=5, $L(\alpha)=5, \delta(453\gamma)=+0.123 4, \delta(492\gamma)=-0.51 2, +2.06 8$. Data are not consistent with J=4 or 6. Note, however, that the 492 γ is very weak. (others: 1956Ko60, 1963Co28 for 452 γ) 5) 5486 α – 620 γ and 5486 α – 576 γ data of 1966KIZZ are suspect. The 5486 α was not seen In the authors' spectrum, so a wide gate was set At its expected position. And the existence of the 576 γ is In doubt. IT has not been reported In singles studies and, As pointed out by 1966KIZZ, most of its contribution to Ag(θ) could Be due to chance coincidences from the strong 583 γ In ²⁰⁸Pb. Data for the 620 γ are consistent with J(620 level)=6, L(α)=5, $\delta(620\gamma) < -8$; >47; not consistent with J=3,4 or 5.

Ag(θ ,H,t): 1969Va21 studied the transient magnetic field (due to recoil) on ²⁰⁸Tl nuclei In Fe.

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0	$5^+_{4^+}$	3.053 min 4	T = t (a)(add) 20.95 t)(t) measured massil of stoms (10655, 202). Others(ma)(t)(1056B)(26)
39.8374	4	0.3 ps o	$1_{1/2}$: (<i>a</i>)(ce(L) 39.857)(t); measured record of atoms (19035602). Others(ps): \approx 4 (1930Bu20), 2.6 <i>10</i> (1958Si81).
328.04 4	5+	>0.1 ps	
473.4 <i>4</i>	(4^{+})		
492.84 <i>4</i>	(3^{+})		
621 [#]	(6 ⁺)		
759 [#]			
803 [#]			

[†] From $E\gamma$, unless otherwise noted.

[‡] From ²⁰⁸Tl Adopted Levels.

[#] Calculated from $\Delta Q(\alpha)$.

$^{212}\text{Bi}\,\alpha$ decay (60.55 min) (continued)

α radiations

 $(\alpha)\gamma(\theta)$: see ²⁰⁸Tl levels from ²¹²Bi α decay (60.55 min). Other: 1962Be09,

E(level)	$I\alpha^{\dagger}\&$	HF ^{‡@}	Comments	
803	0.00011 1	≈20000		
759	0.0010 1	≈3800		
621	0.013	≈1500		
492.84	1.13	≈70		
473.4	0.157	≈630		
328.04	1.70	≈280	I α : other: 1.67 2 (1962Be09).	
39.857	69.91 [#] 15	≈130		
0.0	27.12 [#] 14	≈480		
	E(level) 803 759 621 492.84 473.4 328.04 39.857 0.0	$\begin{array}{c c} \underline{E}(\text{level}) & \underline{I\alpha^{\dagger\&}} \\ \hline \underline{803} & 0.00011 \ I \\ \hline 759 & 0.0010 \ I \\ 621 & 0.013 \\ 492.84 & 1.13 \\ 473.4 & 0.157 \\ 328.04 & 1.70 \\ \hline 39.857 & 69.91^{\#} \ I5 \\ 0.0 & 27.12^{\#} \ I4 \end{array}$	$\begin{array}{c c} \underline{\mathrm{E}(\mathrm{level})} & \underline{\mathrm{I}\alpha^{\dagger\&}} & \underline{\mathrm{HF}^{\ddagger@}} \\ \hline 803 & 0.00011 \ 1 & \approx 20000 \\ 759 & 0.0010 \ 1 & \approx 3800 \\ 621 & 0.013 & \approx 1500 \\ 492.84 & 1.13 & \approx 70 \\ 473.4 & 0.157 & \approx 630 \\ 328.04 & 1.70 & \approx 280 \\ 39.857 & 69.91^{\#} \ 15 & \approx 130 \\ 0.0 & 27.12^{\#} \ 14 & \approx 480 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

[†] From 1960Wa14, unless otherwise noted. E α corrected (+4 keV) for calibration change (see 1991Ry01). I α renormalized by evaluator to $\Sigma I\alpha$ (weak branches)=100- $\Sigma I\alpha$ (6051+6090).

 $r_0(^{208}\text{Tl})=1.50 2.$ # From 1991Ry01.

^(a) The radius parameter is poorly known, and alone contributes an uncertainty of $\Delta(HF) = +53\%$ and -35%. HF=71 +38-25, for the 5607 α , for example.

[&] For absolute intensity per 100 decays, multiply by 0.3594 6.

 $\gamma(^{208}\text{Tl})$

Absolute intensity measurements: $I\gamma(288.20\gamma)=0.337$ 4 per 100 ²¹²Bi decays (1984Ge07) which gives $I\gamma(288.20\gamma)=0.938$ 8 per 100 ²¹²Bi α decays. Other: 1983Sc13.

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. ^a	δ	α ^{C}	Comments
39.857 4	2.96 24	39.857	4+	0.0 5+	M1		23.2	α(L)=17.81 25; α(M)=4.16 6; α(N+)=1.275 18 α(N)=1.052 15; α(O)=0.204 3; α(P)=0.0193 3 Eγ: from the B×ρ measurements of 1956Si23, recalculated by the evaluator using revised fundamental constants (1987Co39) and electron binding energies (1967Be73). Mult.: L1:L2:L3:M1:M2:M3:N12:O12=1000 25:106 5:8.2 33:262 15:30 5:6.2 25: 76 4:10 4 (1963Se20). L1:L2:L3:M1:N:O=1000:92:8.0:231:57:13 (1957Zh05). α=22.6 5 from αγ-coin (1966II01). From L3/L1, δ<0.012
^x 124.1								E_{γ} : from 1973SIZJ; observed ce(L) and ce(M) lines In ²¹² Pb source and found to Be converted In Tl. Not reported by other authors.
^x 144.94 ^d								1957Zh05 report E=144.94 with I(ce(K))=0.036. The transition is not seen by 1962Be09 who report I γ <0.006. These data give α (K)exp>6, consistent only with a large E0 component.

$^{212}\text{Bi}\,\alpha$ decay (60.55 min) (continued)

γ (²⁰⁸Tl) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ	α ^C	Comments
288.20 4	0.938 8	328.04	5+	39.857	4+	M1+E2	+0.067 6	0.436	$\begin{array}{l} \alpha(\mathrm{K}) = 0.357 \ 5; \ \alpha(\mathrm{L}) = 0.0605 \ 9; \\ \alpha(\mathrm{M}) = 0.01411 \ 20; \ \alpha(\mathrm{N} +) = 0.00432 \\ 6 \end{array}$
	0.0408 17		5 +		-			0.007	α(N)=0.00356 5; α(O)=0.000692 10; α(P)=6.54×10-5 10 Mult.: from K/L=5.6 6 (1967Be19); Ag(θ) (1963Co28, 1966KIZZ). δ: δ from Ag(θ) (1966KIZZ).
328.03 4	0.349 ^{&} 17	328.04	5+	0.0	5+	M1		0.307	$\alpha(K)=0.252 4; \alpha(L)=0.0425 6; \alpha(M)=0.00990 14; \alpha(N+)=0.00303 5 \alpha(N)=0.00250 4; \alpha(O)=0.000486 7; \alpha(P)=4.60\times10^{-5} 7 M k(Q)=0.220 15 (1055)(10)$
									Mult.: α (K)exp=0.230 15 (1955Ni19), 0.27 2 (1967Be19), 0.31 3 from (K x ray) γ/γ (1966II01). L1/K=0.23 +7-6 (1963Da11). L/K=0.15 4 (1967Be19), 0.21 4 (1955Ni19). Other: α (K)exp=0.30 (1957Vo22).
433.7 5	0.047 [#] 9	473.4	(4+)	39.857	4+	M1		0.1451	α (K)=0.1191 <i>17</i> ; α (L)=0.0199 <i>3</i> ; α (M)=0.00464 <i>7</i> ; α (N+)=0.001421 <i>21</i> α (N)=0.001172 <i>17</i> ; α (O)=0.000228 <i>4</i> ;
									$\alpha(P)=2.16\times10^{-5} \ 3$ Mult.: $\alpha(K)exp=0.43 \ 12 \ (1967Be19),$ $0.25 \ 9 \ (1955Ni19).$ Other: 0.12 $(1957Vo22), \ 0.13 \ 7 \ (1963Da11)$ using authors Ice(K)/Ice(K)(328 γ).
452.98 <i>5</i>	1.010 9	492.84	(3+)	39.857	4+	M1		0.1292	$\alpha(K)=0.1061 \ 15; \ \alpha(L)=0.01772 \ 25; \\ \alpha(M)=0.00413 \ 6; \ \alpha(N+)=0.001264 \\ 18 \\ \alpha(N)=0.001042 \ 15; \ \alpha(O)=0.000203 \ 3; \\ \alpha(D)=1.02\times10^{-5} \ 3 $
									Mult.: α (K)exp=0.086 22 (1978Av01), normalized to mult(583γ)=E2 In 208 Tl β^- decay, 0.115 6 (1967Be19), 0.100 7 (1955Ni19). Other: 0.11 (1957Vo22).
473.0 7	0.14 [#] 1	473.4	(4 ⁺)	0.0	5+	M1+E2		0.07 5	$\alpha(K)=0.06\ 4;\ \alpha(L)=0.011\ 5;$ $\alpha(M)=0.0027\ 10;\ \alpha(N+)=0.0008\ 3$ $\alpha(N)=0.00069\ 24;\ \alpha(O)=0.00013\ 5;$ $\alpha(P)=1.1\times10^{-5}\ 6$ Mult: $\alpha(K)\exp=0.079\ 18\ (1967Be19)$
									0.100 15 (1966II01). 0.053 15 (1955Ni19). Other: 0.12 (1957Vo22). The value of 1966II01 is from (K x ray) γ/γ for the unresolved 473+493 γ ; however, the 493 γ is questionable.
493.3 ^d 7	<0.01#	492.84	(3 ⁺)	0.0	5+				Mult.: I(ce(K))=0.009 (1957Vo22) not seen by 1967Be19 who report $I\gamma < 0.01$. These data give α (K)exp>0.9, requiring mult \ge M4 or an E0 component. The placement is not consistent with mult=E0.

Continued on next page (footnotes at end of table)

$^{212}\text{Bi}\,\alpha$ decay (60.55 min) (continued)

γ (²⁰⁸Tl) (continued)

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
576 ^{@d}	< 0.001	621	(6+)	39.857	4+	I_{γ} : I(γ)/I(620 γ)=0.22 <i>10</i> (1966KIZZ). Transition masked by strong 583 γ In ²⁰⁸ TL decay
620 [@] d	< 0.003	621	(6+)	0.0	5+	I_{γ} : not seen. The I γ limit is from 1962Be09.

[†] From 1957Vo22, unless otherwise noted. The evaluator has recalculated $E\gamma$ from $B \times \rho(ce(K))$ using revised fundamental constants (1987Co39) and electron binding energies (1967Be73). Others: 1984Ge07, 1982Sa36, 1973Da38, 1967Be19.

[‡] From 1984Ge07, unless otherwise noted. Others: 1983Sc13, 1982Sa36, 1973Da38, 1967Be19, 1962Be09, 1960Em01.

From 1967Be19.

[@] From 1966K1ZZ.

& Corrected for contribution from 327.6-keV γ from ²³²U decay.

^{*a*} The quoted $\alpha(K)$ exp values are from Ice(K) and the adopted I γ values, normalized to $\alpha(K)$ =0.357 for the 288 γ , unless noted otherwise.

^b For absolute intensity per 100 decays, multiply by 0.3594 6.

^{*c*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

²¹²Bi α decay (60.55 min)

