208 Fr ε decay 1981Ri02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007

Parent: ²⁰⁸Fr: E=0; $J^{\pi}=7^+$; $T_{1/2}=59.1$ s 3; $Q(\varepsilon)=6983$ 48; $\%\varepsilon+\%\beta^+$ decay=11 3

²⁰⁸Rn Levels

E(level)	$J^{\pi \ddagger}$	E(level)	$J^{\pi \ddagger}$	T _{1/2} †	E(level)	$J^{\pi \ddagger}$
0 635.8 2 1188.9 2 1414.3 2 1578.2 <i>11</i> 1658.7 <i>3</i> 1739.5 <i>3</i>	$0^{+} \\ 2^{+} \\ 4^{+} \\ (4,5,6)^{+} \\ 4^{+},5^{+} \\ 6^{+} \\ 0^{+} \\ $	1825.2 3 1828.4 4 1905.7 3 2128.8 5 2163.4 5 2179.0 3 2320.3 4	$ \begin{array}{c} 6^+\\ 8^+\\ 6^+\\ 7^+,8^+\\ (5^-,6^+)\\ 6^+,7^+,8^+ \end{array} $	0.35 μs 22	2330.3 <i>3</i> 2356.8 <i>3</i> 2459.1 <i>4</i> 2546.0 <i>3</i> 2619.0 <i>4</i>	$\begin{array}{c} (5^{-},6,7^{+})\\ (5^{-},6^{+})\\ 6^{+},7^{+},8^{+}\\ (6,7^{+})\\ 6^{+},7^{+},8^{+} \end{array}$

[†] From $\gamma\gamma$ (t). [‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
$(4.36 \times 10^3 5)$	2619.0	0.034 10	0.11 3	7.7 2	0.14 4	av Eβ=1505 36; εK=0.603 10; εL=0.1140 20; εM+=0.0382 7
$(4.44 \times 10^3 5)$	2546.0	0.049 18	0.14 5	7.6 2	0.19 7	av Eβ=1537 36; εK=0.593 10; εL=0.1122 20; εM+=0.0376 7
$(4.52 \times 10^3 5)$	2459.1	0.20 6	0.53 15	7.0 2	0.73 21	av Eβ=1576 36; εK=0.582 11; εL=0.1100 20; εM+=0.0369 7
$(4.63 \times 10^3 5)$	2356.8	0.15 4	0.36 10	7.2 2	0.51 14	av Eβ=1622 36; εK=0.569 11; εL=0.1074 20; εM+=0.0360 7
$(4.65 \times 10^3 5)$	2330.3	0.04 3	0.10 7	7.8 4	0.14 10	av Eβ=1634 36; εK=0.566 11; εL=0.1068 20; εM+=0.0358 7
$(4.66 \times 10^3 5)$	2320.3	0.053 18	0.13 4	7.7 2	0.18 6	av Eβ=1638 36; εK=0.564 11; εL=0.1065 20; εM+=0.0357 7
$(4.80 \times 10^3 5)$	2179.0	0.14 5	0.31 10	7.3 2	0.45 15	av Eβ=1702 36; εK=0.546 11; εL=0.1030 20; εM+=0.0345 7
$(4.82 \times 10^3 5)$	2163.4	0.6 3	1.3 7	6.7 3	1.9 10	av E β =1709 36; ε K=0.544 11; ε L=0.1026 20; ε M+=0.0344 7
$(4.85 \times 10^3 5)$	2128.8	0.2 1	0.5 2	7.1 2	0.7 3	av Eβ=1725 36; εK=0.540 11; εL=0.1017 20; εM+=0.0341 7
$(5.08 \times 10^3 5)$	1905.7	0.1 1	0.3 2	7.4 4	0.4 3	av Eβ=1825 36; εK=0.511 11; εL=0.0962 20; εM+=0.0322 7
$(5.15 \times 10^3 5)$	1828.4	0.2 2	0.3 3	≥6.9	0.5 5	av Eβ=1860 36; εK=0.501 10; εL=0.0943 20; εM+=0.0316 7
$(5.16 \times 10^3 5)$	1825.2	0.3 1	0.4 3	7.2 3	0.7 4	av Eβ=1862 36; εK=0.501 10; εL=0.0942 20; εM+=0.0315 7
$(5.24 \times 10^3 5)$	1739.5	1.2 6	2.0 9	6.6 <i>3</i>	3.2 15	av Eβ=1900 36; εK=0.490 10; εL=0.0921 20; εM+=0.0308 7
$(5.40 \times 10^3 \ddagger 5)$	1578.2	≤0.2	≤0.3	≥7.4	≤0.5	av Eβ=1974 36; εK=0.470 10; εL=0.0882 19; εM+=0.0295 7

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

 $\gamma(^{208}\text{Rn})$

I γ normalization: from Ti(γ 's to g.s.)=Ti(635.8 γ)=100.

 \mathbf{b}

E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α [@]	$I_{(\gamma+ce)}^{\#}$	Comments
80.8		1739.5	6+	1658.7 4+,5+				3.8 11	E_{γ} : from energy level difference. Not seen but presence inferred from coincidence data In (¹⁶ O,4n γ).
88.9 <i>1</i>	1.5 3	1828.4	8+	1739.5 6+	E2		14.03		$I_{(\gamma+ce)}$: from intensity balance At the 1659 level. $\alpha(L)=10.35$ 16; $\alpha(M)=2.79$ 5; $\alpha(N+)=0.888$ 14 $\alpha(N)=0.726$ 11; $\alpha(O)=0.1463$ 22; $\alpha(P)=0.01616$ 25 Mult: $\alpha(L)=0.17$
161.6	2.9 6	1739.5	6+	1578.2 (4,5,6) ⁺	[M1,E2]		2.3 11		$\begin{array}{l} \alpha(\mathbf{K}) = 1.5 \ I3; \ \alpha(\mathbf{L}) = 0.58 \ 9; \ \alpha(\mathbf{M}) = 0.15 \ 4; \\ \alpha(\mathbf{N}+) = 0.048 \ I0 \\ \alpha(\mathbf{N}) = 0.039 \ 9; \ \alpha(\mathbf{O}) = 0.0081 \ I5; \ \alpha(\mathbf{P}) = 0.00102 \ 6 \end{array}$
163.7	2.0 12	1578.2	(4,5,6)+	1414.3 4+	[M1,E2]		2.2 11		E_{γ} : from (¹⁶ O,4n γ). Not seen In ε decay. I_{γ} : from $I\gamma/I\gamma(325\gamma)=0.054$ 11 In (¹⁶ O,4n γ). $\alpha(K)=1.4$ 12; $\alpha(L)=0.55$ 8; $\alpha(M)=0.14$ 3; $\alpha(N+)=0.045$ 9 $\alpha(N)=0.037$ 8; $\alpha(O)=0.0077$ 13; $\alpha(P)=0.00097$ 5 E_{γ} : from (¹⁶ O,4m γ). Not seen In α decay.
225.5 2	0.77 10	1414.3	4+	1188.9 4+	M1		1.315		I_{γ} : from $(-0,4n\gamma)$. Not seen in ε decay. I_{γ} : from $I_{\gamma}/I_{\gamma}(389\gamma)=1.0 + 8-6$ In $(^{16}O,4n\gamma)$. $\alpha(K)=1.064$ 16; $\alpha(L)=0.191$ 3; $\alpha(M)=0.0454$ 7; $\alpha(N+)=0.01481$ 21 $\alpha(N)=0.01184$ 17; $\alpha(O)=0.00259$ 4; $\alpha(P)=0.000378$ 6
298.7 1	0.95 10	2619.0	6 ⁺ ,7 ⁺ ,8 ⁺	2320.3 6 ⁺ ,7 ⁺ ,8 ⁺	M1+E2	1.0 <i>1</i>	0.372 25		Mult.: $\alpha(K)$ exp=1.22 <i>12</i> . $\alpha(K)$ =0.279 <i>23</i> ; $\alpha(L)$ =0.0699 <i>21</i> ; $\alpha(M)$ =0.0172 <i>5</i> ; $\alpha(N+)$ =0.00558 <i>15</i> $\alpha(N)$ =0.00449 <i>12</i> : $\alpha(Q)$ =0.00096 <i>3</i> : $\alpha(P)$ =0.000131 <i>5</i>
325.2 2	53 4	1739.5	6+	1414.3 4+	E2		0.1088		Mult.: $\alpha(K) \exp = 0.29 \ 4.$ $\alpha(K) = 0.0579 \ 9; \ \alpha(L) = 0.0378 \ 6; \ \alpha(M) = 0.00990 \ 14;$ $\alpha(N+) = 0.00317 \ 5$
335.0 <i>3</i>	12 5	2163.4	7+,8+	1828.4 8+	M1		0.442		$\alpha(N)=0.00258 \ 4; \ \alpha(O)=0.000532 \ 8; \ \alpha(P)=6.44\times10^{-5} \ 10$ Mult.: $\alpha(K)\exp=0.044 \ 2.$ $\alpha(K)=0.358 \ 5; \ \alpha(L)=0.0639 \ 9; \ \alpha(M)=0.01515 \ 22; \ \alpha(N+)=0.00494 \ 7$ $\alpha(N)=0.00395 \ 6; \ \alpha(O)=0.000864 \ 13; \ \alpha(P)=0.0001262 \ 18$ Mult.: $\alpha(K)\exp=0.40 \ 16.$
389.3	2.0 12	1578.2	(4,5,6)+	1188.9 4+					
389.3 [†] <i>3</i> 469.8 <i>1</i>	4.8 <i>12</i> 5.7 <i>4</i>	2128.8 1658.7	6 ⁺ ,7 ⁺ 4 ⁺ ,5 ⁺	1739.5 6 ⁺ 1188.9 4 ⁺	M1		0.1771		$\alpha(K)=0.1437\ 21;\ \alpha(L)=0.0254\ 4;\ \alpha(M)=0.00603\ 9;$

	$\frac{208}{\text{Fr}} \varepsilon \text{ decay} \qquad 1981 \text{Ri02 (continued)}$							
γ ⁽²⁰⁸ Rn) (continued)								
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	Comments
								α (N+)=0.00196 <i>3</i> α (N)=0.001571 <i>22</i> ; α (O)=0.000344 <i>5</i> ; α (P)=5.02×10 ⁻⁵ <i>7</i> Mult.: α (K)exp=0.146 <i>15</i> .
491.9 <i>1</i>	2.8 2	2320.3	6+,7+,8+	1828.4	8+	E2	0.0366	$\alpha(K)=0.02444; \alpha(L)=0.0091013; \alpha(M)=0.002314; \alpha(N+)=0.00074511$ $\alpha(N)=0.0006039; \alpha(O)=0.000126418; \alpha(P)=1.620\times10^{-5}23$
553.1 <i>1</i>	31.0 22	1188.9	4+	635.8	2+	E2	0.0278	Mult.: $\alpha(\mathbf{K}) \exp=0.025$ 5. $\alpha(\mathbf{K}) = 0.0193$ 3; $\alpha(\mathbf{L}) = 0.00635$ 9; $\alpha(\mathbf{M}) = 0.001601$ 23; $\alpha(\mathbf{N}+) = 0.000516$ 8 $\alpha(\mathbf{N}) = 0.000417$ 6; $\alpha(\mathbf{O}) = 8.78 \times 10^{-5}$ 13; $\alpha(\mathbf{P}) = 1.144 \times 10^{-5}$ 16
635.8 2	100	635.8	2+	0	0+	E2	0.0204	Mult.: α (K)exp=0.017 <i>1</i> . α (K)=0.01475 <i>21</i> ; α (L)=0.00424 <i>6</i> ; α (M)=0.001059 <i>15</i> ; α (N+)=0.000342 <i>5</i> α (N)=0.000276 <i>4</i> ; α (O)=5.84×10 ⁻⁵ <i>9</i> ; α (P)=7.75×10 ⁻⁶ <i>11</i>
636.3 2	6.4 28	1825.2	6+	1188.9	4+	E2	0.0204	Mult.: α (K)exp=0.014 <i>1</i> . α (K)=0.01473 <i>21</i> ; α (L)=0.00423 <i>6</i> ; α (M)=0.001056 <i>15</i> ; α (N+)=0.000341 <i>5</i> α (N)=0.000275 <i>4</i> ; α (O)=5.83×10 ⁻⁵ <i>9</i> ; α (P)=7.73×10 ⁻⁶ <i>11</i> Mult : α (K)exp=0.014 <i>I</i> .
671.6.1	139	2330.3	$(5^{-} 6 7^{+})$	1658 7	4 ⁺ 5 ⁺			Mult.: $u(\mathbf{K}) \exp[-0.014] T$.
716.8 1	4.0 28	1905.7	6 ⁺	1188.9	4+,5	E2	0.01581	$\alpha(K)=0.01175 \ 17; \ \alpha(L)=0.00306 \ 5; \ \alpha(M)=0.000757 \ 11; \ \alpha(N+)=0.000245 \ 4$
								$\alpha(N)=0.000197 \ 3; \ \alpha(O)=4.20\times10^{-5} \ 6; \ \alpha(P)=5.65\times10^{-6} \ 8$
								Mult.: α (K)exp=0.025 10.
719.6 <i>1</i>	6.6 5	2459.1	$6^+, 7^+, 8^+$	1739.5	6+	E2	0.01568	α (K)=0.01166 <i>17</i> ; α (L)=0.00303 <i>5</i> ; α (M)=0.000749 <i>11</i> ; α (N+)=0.000242 <i>4</i>
								$\alpha(N) = 0.000195 \ 3; \ \alpha(O) = 4.15 \times 10^{-5} \ 6; \ \alpha(P) = 5.59 \times 10^{-6} \ 8$
1 2 0 7 7	60.5	1414.2	4+	625 0	2+	EO	0.01224	Mult.: $\alpha(K) \exp = 0.011 2$.
//8.5 1	09 5	1414.5	4	035.8	2	E2	0.01554	$\alpha(\mathbf{K}) = 0.01000 \ 14; \ \alpha(\mathbf{L}) = 0.00247 \ 4; \ \alpha(\mathbf{M}) = 0.0000008 \ 9; \ \alpha(\mathbf{M}+) = 0.000190 \ 5$
								$\alpha(1) = 0.000138125, \alpha(0) = 3.38 \times 10^{-5}, \alpha(1) = 4.39 \times 10^{-7}$ Mult · $\alpha(K) = 0.010$ /
887.3 1	1.7 4	2546.0	$(6,7^{+})$	1658.7	$4^+, 5^+$			
942.5 <i>1</i>	4.6 3	2356.8	$(5^{-},6^{+})$	1414.3	4+			
990.1 <i>1</i>	4.1 8	2179.0	(5 ⁻ ,6 ⁺)	1188.9	4+			

From ENSDF

[†] Unresolved doublet. Intensity obtained from coincidence data. Values shown are from a private communication from the first author. Values In authors' table II are misprints.

[‡] From relative Iγ and Ice normalized to known α(K) values In ¹³³Ba and ²⁰⁷Bi decays.
[#] For absolute intensity per 100 decays, multiply by 0.11 3.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 ${}^{208}_{86}$ Rn₁₂₂-4

²⁰⁸Fr ε decay **1981Ri02**

 $^{208}_{86} Rn_{122}$