¹⁹⁶Pt(¹⁶O,4nγ) **1983Tr03,1981Ho29**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007

1981Ho29 E=85-110 MeV. Measured E γ , I γ , σ (E, θ), $\gamma\gamma$, $\gamma\gamma$ (t). 1983Tr03 E=89 MeV. Measured E γ , I γ , Ice, $\sigma(\theta)$, $\gamma\gamma$, $\gamma\gamma$ (t). Other: 1979BaXU.

²⁰⁸Rn Levels

The level scheme is that proposed by 1983Tr03. Differences between this scheme and that of 1981Ho29, mainly In the high-lying levels, are discussed by 1983Tr03. Other: 1979BaXU.

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0	0^{+}		
635.8 2	2 ⁺		
1188.9 2	4+		
1414.3 2	4+		
1578.0 4	$(5,6)^+$		
1658.6 <i>3</i>	5+		
1739.6 <i>3</i>	6+		
1828.3 4	8+	487 ns 17	T _{1/2} : weighted average of values of 1981Ho29 (473 ns 11) and 1983Tr03 (509 ns 14). Other: 1979BaXU (490 ns 40).
2163.4 4	10^{+}		
2319.4 4	9-		
2465.1 4	10^{+}		
2618.1 4	10-	11.8 ns 7	T _{1/2} : from 1983Tr03. Others: 1979BaXU (21 ns 5), 1981Ho29 (17 ns 3).
2621.2 4	11-	3.5 ns 7	$T_{1/2}$: from 1983Tr03.
2797.4 4	12^{+}		
2935.2? [‡] 5	13		
2954.5 4	13		
3080.8? [‡] 6	14		
3110.8 4	12^{+}		
3198.3 4	12-		
3389.3 4	13-		
3413.1? [‡] 6	15		
3469.0 4	14^{+}	3.5 ns 14	T _{1/2} : from 1983Tr03.
3520.7 4	13-		-,-
3779.1 4	14-		
3851.7? [‡] 6	16		
3925.2 4	15-		
4066.4 5	16-	18.3 ns 4	$T_{1/2}$: from 1983Tr03. Other: 1981Ho29 (20 ns 2).
4524.6 5	16		
4832.6 5	18-		
5178.3 5	19-		
5377.0 5	19		
5930.6 6	21		

[†] From 1983Tr03 based on γ multipolarities, $\gamma(\theta)$ and lifetime data.

[‡] The order of the 138, 146, 332 and 439 has not been established and thus the levels At 2935, 3081, 3413 and 3852 are not uniquely determined.

				¹⁹⁶ Pt (¹⁰	⁶ Ο,4n γ)	1983T ı	r03,1981F	lo29 (con	tinued)
						γ ⁽²⁰⁾	⁸ Rn)		
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	α ^{C}	$I_{(\gamma+ce)}$	Comments
3.1		2621.2	11-	2618.1	10-			≈49	E_{γ} : not observed. Existence inferred from coincidence data. Eγ from energy level differences. Mult.: from decay scheme, multipolarity=M1 or E2. Note that B(M1)(W.u.)≈0.039, B(E2)(W.u.)≈4.9×10 ² for α =4.43×10 ³ (M1), 1.33×10 ⁷ (E2) (values from 2005KiZT) and Ti(3.1γ)≈89%. Note that the α values do not include any M-shell conversion since the transition energy is very close to the M-shell binding energies. The B(M1)(W.u.) and B(E2)(W.u.) values are thus upper limits. I _(γ+ce) : I(γ+ce)≈53 from intensity balance At the 2618 level. From intensity balance At the 2621 level one exhtension from the state of the form
81		1739.6	6+	1658.6	5+			≈6.4	obtains $I(\gamma+ce)\approx 45$. not observed. Existence inferred from coincidence data. $I_{(\gamma+ce)}$: from intensity balance At the
88.7 2	8.0 10	1828.3	8+	1739.6	6+	E2	14.4		1658 level, $I(\gamma+ce)=6.4$ / relative to $I\gamma(635.8\gamma)=100$. Mult.: from measured I γ and $I(\gamma+ce)$ determined from an intensity balance of delayed components At the 1828 level the authors obtain $\alpha=20$ 4. α (theory)=14.4 (E2), 3.8 (M1).
137.8 ^{<i>d</i>} 3 141.2 2	2.4 7 1.9 5	2935.2? 4066.4	13 16 ⁻	2797.4 3925.2	12 ⁺ 15 ⁻	D& M1	5.17		Mult.: $A_2 = -0.36 \ 8$, $A_4 = +0.11 \ 9$. Mult.: from measured I γ and I(γ +ce) determined from an intensity balance of delayed components At the 3925 level the authors obtain α =5.9 <i>I</i> 2. A_2 =-0.11 <i>I</i> 7. A_4 =+0.31 <i>I</i> 9.
145.6 ^d 3	1.7 7	3080.8?	14	2935.2?	13	D&			Mult: $A_2 = -0.52$ 24, $A_4 = +0.08$ 23 for the 145.6 + 146.2 transitions. The 146.2 γ
146.2 <i>3</i>	2.1 7	3925.2	15-	3779.1	14-	M1	4.68		Mult.: from measured I γ and I(γ +ce) determined from an intensity balance of delayed components At the 3739 level, the authors obtain α =4.2 <i>13</i> .
153.0 <i>1</i> 156.1 2	1.4 <i>4</i> 5.3 <i>5</i>	2618.1 2621.2	10 ⁻ 11 ⁻	2465.1 2465.1	10 ⁺ 10 ⁺	[E1] E1	0.167 0.159		Mult.: A_2 =+0.06 9, A_4 =+0.17 11. Mult.: A_2 =-0.15 4, A_4 =+0.06 4. From measured I γ and I(γ +ce) determined from an intensity balance of delayed components At the 2465 level, the authors obtain α =0.56 45. α (theory)=0.16 (E1) 4.0 (M1)
157.1 2 161.6 <i>3</i> 163.7 <i>5</i>	3.1 5 3.5 7 1.2 5	2954.5 1739.6 1578.0	$13 \\ 6^+ \\ (5,6)^+$	2797.4 1578.0 1414.3	12 ⁺ (5,6) ⁺ 4 ⁺	D&			Mult.: $A_2 = -0.23 \ 12, \ A_4 = +0.09 \ 12.$
191.0 <i>1</i>	1.9 <i>3</i>	3389.3	13-	3198.3	12-	D <mark>&</mark>			Mult.: A ₂ =-0.26 6, A ₄ =+0.15 8 gives

Continued on next page (footnotes at end of table)

			¹⁹⁶ Pt(¹⁶ O,4nγ) 1983Tr03,1981			,1981Ho	29 (continu	ed)	
γ ⁽²⁰⁸ Rn) (continued)									
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	δ	α^{c}	Comments
225.5 2	1.8 4	1414.3	4+	1188.9	4+	M1		1.38	mult=dipole. Placement In the level scheme requires $\Delta \pi$ =No. Mult.: A ₂ =-0.08 9, A ₄ =-0.15 11. Mult=M1 from α (K)exp In ²⁰⁸ Fr ε
258.4 1	13.6 5	3779.1	14-	3520.7	13-	D		0.947	decay. Mult.: $A_2 = -0.33 \ 2$, $A_4 = +0.01 \ 2$ give mult=dipole. $\alpha(K) \exp \leq 0.8 \ 3$ gives mult= E1, E2, or M1. Placement In the level scheme requires $\Delta \pi = N_0$
298.7 1	6.9 4	2618.1	10-	2319.4	9-	M1		0.635	Mult.: $A_2 = -0.05 \ 4$, $A_4 = +0.03 \ 4$. $\alpha(K) \exp = 0.8 \ 3 \ \alpha(L) \exp = 0.11 \ 5$
322.4 1	11.5 6	3520.7	13-	3198.3	12-	M1		0.515	Mult.: $A_2 = -0.375$, $A_4 = +0.025$. $\alpha(K) \exp = 0.63 \alpha(L) \exp = 0.168$
325.3 1	65 <i>3</i>	1739.6	6+	1414.3	4+	E2		0.110	Mult.: $A_2 = +0.072$ 7, $A_4 = -0.024$ 7. α (K)exp=0.062 13, α (L)exp=0.024 8.
332.3 1	6.4 10	2797.4	12^{+}	2465.1	10^{+}	(E2) [@]		0.104	
332.3 ^d 1	5.0 10	3413.1?	15	3080.8?	14	(M1) [@]		0.474	
335.1 <i>I</i>	12.0 12	2163.4	10^{+}	1828.3	8+	E2 [@]		0.101	
345.7 2	6.1 11	5178.3	19-	4832.6	18-	M1		0.426	Mult.: $A_2 = -0.27 \ 8$, $A_4 = -0.05 \ 9$. $\alpha(K) \exp[=0.39 \ 8$.
358.2 2	5.1 5	3469.0	14+	3110.8	12+	E2		0.084	Mult.: $A_2 = +0.33 \ 3$, $A_4 = -0.09 \ 4$. $\alpha(K)\exp{\leq 0.33 \ 10}$.
389.2 5	1.3 6	1578.0	$(5,6)^+$	1188.9	4+	E2 [#]		0.067	
389.7 2	9.7 7	3779.1	14^{-}	3389.3	13-	M1 [#]		0.308	
438.6 ^d 1	4.3 6	3851.7?	16	3413.1?	15	D&			Mult.: $A_2 = -0.52$ 6, $A_4 = +0.01$ 6.
456.2 1	5.4 5	3925.2	15-	3469.0	14+	D		0.107	Mult.: $A_2 = -0.14 \ 4$, $A_4 = -0.04 \ 4$. $\alpha(K)\exp \le 0.11 \ 3$. Placement In the level scheme requires $\Delta \pi = yes$.
469.7 1	5.4 0	1658.6	5'	1188.9	4'	MI		0.187	Mult.: $A_2 = +0.02$ 4, $A_4 = +0.03$ 4. $\alpha(K) \exp[=0.15$ 3.
491.1 <i>1</i>	18.9 6	2319.4	9-	1828.3	8+	E1		0.0115	Mult.: $A_2 = -0.05 \ 2$, $A_4 = 0.00 \ 2$. $\alpha(K) \exp < 0.015 \ 3$.
535.8 1	7.1 5	3925.2	15-	3389.3	13-	E2		0.0302	Mult.: $A_2 = +0.10 \ 6$, $A_4 = +0.02 \ 6$. $\alpha(K) \exp \leq 0.046 \ 10$.
544.4 2	1.8 8	5377.0	19	4832.6	18-	D&			Mult.: $A_2 = -0.20 \ 10.$
553.1 <i>I</i>	15.9 7	1188.9	4+	635.8	2+	E2		0.0280	Mult.: $A_2 = +0.10 \ 2$, $A_4 = 0.00 \ 2$. $\alpha(K) \exp = 0.021 \ 4$.
577.2 1	26.1 9	3198.3	12-	2621.2	11-	M1(+E2)	<0.7	0.094 13	Mult.: $A_2 = -0.52 2$, $A_4 = +0.02 2$. α (K)exp=0.083 17, α (L)exp=0.015 5.
^x 594.1 2	4.0 7					L			deexcites level above 2465 level.
634.0 <i>3</i>	6.7 17	2797.4	12^{+}	2163.4	10^{+}	E2		0.0207	Mult.: $A_2 = +0.11$ 7, $A_4 = -0.07$ 8.
635.8 2	100.0 21	635.8	2+	0	0^{+}	E2 ^b		0.0206	Mult.: $A_2 = +0.08 \ l$, $A_4 = -0.02 \ l$.
636.7 2	31.3 25	2465.1	10^{+}	1828.3	8+	E2 ^b		0.0205	Mult.: $A_2 = +0.21 5$, $A_4 = -0.02 5$.
645.7 1	8.2 8	3110.8	12+	2465.1	10+	E2		0.0199	Mult.: $A_2 = +0.25 5$, $A_4 = -0.04 4$. $\alpha(K) \exp \leq 0.026 5$.
745.5 2	2.4 5	4524.6	16	3779.1	14^{-}	Q ^{&}			Mult.: $A_2 = +0.27 \ 9$, $A_4 = -0.19 \ 8$.
752.3 2	1.8 5	5930.6	21	5178.3	19-	Q ^{&}			Mult.: A ₂ =+0.43 10, A ₄ =-0.19 10.
766.2 2	9.1 7	4832.6	18^{-}	4066.4	16^{-}	E2 ^a		0.0139	Mult.: $A_2 = +0.39 2$, $A_4 = -0.12 2$.
768.2 2	15.2 8	3389.3	13-	2621.2	11^{-}	E2 ^a		0.0139	Mult.: A ₂ =+0.19 2, A ₄ =-0.06 2.
778.5 1	77.1 12	1414.3	4+	635.8	2+	E2		0.0135	Mult.: $A_2 = +0.082$ 6, $A_4 = -0.017$ 6. $\alpha(K) \exp = 0.010$ 2, $\alpha(L) \exp = 0.0019$ 6.
789.7 1	35.5 9	2618.1	10-	1828.3	8+	M2		0.116	Mult.: $A_2=0.10 \ I$, $A_4=-0.03 \ I$. α (K)exp=0.078 $I6$, α (L)exp=0.014 4 .

Continued on next page (footnotes at end of table)

¹⁹⁶Pt(¹⁶O,4nγ) **1983Tr03,1981Ho29** (continued)

γ (²⁰⁸Rn) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{C}	Comments
899.5 1	9.5 6	3520.7	13-	2621.2 11-	E2	0.0101	Mult.: $A_2 = +0.24$ 5, $A_4 = -0.10$ 5. α (K)exp=0.007 2.

[†] From 1983Tr03. The I γ are relative photon intensities.

[‡] From relative I γ and Ice data of 1983Tr03. Normalization condition not given but $\alpha(K)$ exp data are consistent with known multipolarity for the 779 γ . $\gamma(\theta)$ data are also invoked.

[#] The 389.2 and 389.7 γ 's are unresolved In ce spectrum. A₂=-0.19 3, A₄=+0.02 4 for the doublet. From data In ²⁰⁸Fr ε decay, the 389.2 γ , deexciting the 1578 level, has mult=E2. The 389.7 γ must then have mult=M1.

^(a) The 332.3 (doublet), and 335.1 γ 's are not resolved In the ce spectrum. From I γ for the three transitions and α (K)exp=0.20 8 for the multiplet one can deduce that the 335 γ cannot Be M1, and that one member, but not both, of the 332 doublet must Be M1. From these observations, along with A₂=-0.10 9, A₄=-0.06 9 for the 332.3 doublet, and A₂=+0.19 2, A₄=-0.02 2 for the 335.1 γ , the authors deduce mult(335 γ)=E2, mult(332 γ)=M1+E2. From the decay scheme, the 332 γ component deexciting the 2797 level must Be E2.

& From $\gamma(\theta)$.

^{*a*} The 766.2 and 768.2 γ 's are not resolved In the ce spectrum. α (K)exp=0.012 3, α (L)exp=0.0025 8 for the doublet, along with the $\gamma(\theta)$ data are consistent only with E2 multipolarity for both transitions.

^b The 634.0, 635.8 and 636.7 γ 's not resolved In the ce spectrum. α (K)exp=0.015 3, α (L)exp=0.0026 11, along with the $\gamma(\theta)$ data are consistent only with mult=E2 for all three transitions.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

 $^{208}_{\ 86} Rn_{122}$