²⁰⁸**Pb**(**n**,**n**' γ)

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007

1977Di12 E=4.9-8.0 MeV. 1979Co02 E=5.2-8.5 MeV. 1990Go33 E=reactor fast neutrons. 1995Hl01 E=14.7 MeV. Measured σ only. 1996Ye01 E<5 MeV from ³H(p,n). E>5 MeV from ²H(d,n). 1998Ye02 E: see 1996Ye01. 2005YaZW E: see 1996Ye01. Others:1971De46, 1971Fr05, 1974Ne07.

²⁰⁸Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0	0^{+}		
2614.524 10	3-	>690 fs	
3197.713 10	5-	>690 fs	
3475.077 11	4-	>690 fs	
3708.472 12	5-	>690 fs	
3919.971 <i>13</i>	6-	>690 fs	
3946.581 <i>14</i>	4-	>430 fs	
3961.172 <i>13</i>	5-	>470 fs	
3995.440 <i>13</i>	4^{-}	>690 fs	
4037.447 14	7-	>690 fs	
4051.136 14	3-	326 fs +28-21	
4085.58 6	2^{+}	<9 fs	J^{π} : J=2 from $\gamma(\theta)$ (1979Co02).
4125.348 12	5-	>490 fs	
4180.416 14	5-	319 fs 35	
4206.281 14	6-	>690 fs	
4229.581 17	2^{-}	333 fs 28	J^{π} : J=2 from $\gamma(\theta)$ (1979Co02).
4254.788 18	3-	97 fs 7	
4261.914 12	4-	>520 fs	
4296.577 <i>13</i>	5-	201 fs +49-35	
4323.947 15	4+	>690 fs	
4358.670 <i>13</i>	4-	194 fs 21	
4383.288 17	6-	>690 fs	
4423.654 15	6+	>110 fs	
4480.749 16	6-	97 fs 7	
4610.750 <i>16</i>	8+	>690 fs	
4680.271 22	7-	>690 fs	
4698.318 18	3-	139 fs +42-28	
4708.725 21	5-	0.24 ps +20-9	
4711.819 21	4-	>340 fs	
4761.958 23	6-	0.26 ps + 18 - 9	
4841.55 10	1-	<9 fs	J^{n} : J=1 from $\gamma(\theta)$ (19/9Co02).
4860.87 6	8+	>22 fs	
4867.92 4	/+ 0+	>97 fs	
4868.41 0	0.	>312 fs	
4911.345 20	4	215 IS +63-42	
4937.19 4	3 2-	1/.5 IS $+35-28$	
4953.303 17	(-) = (+)	55.5 IS 14	
4962.429 21	4 ,5 ,5 ,	>440 ts	
4973.918 20	5 ⁻	166 fs 21	
5037.551 17	3	90 fs /	

²⁰⁸Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
$5074.807^{@}25$		69 fs $+13-10$	
5075 5 10			
5079 915 20	6-	111 fs $+28-21$	
5085 473 25	7-	>229 fs	
5092 99 3	, 8 ⁺	>690 fs	
5127 360 16	2-3-	64 fs 3	
5193,435,25	5+,5	>319 fs	
5195.056 23	34-	187 fs + 42 - 35	
5195.38 15	7+	>690 fs	
5213.013 22	$(6)^{+}$	76 fs +21-14	
5214.00 3	(5 ⁻)	14 fs 3	
5216.216 18	4+	32 fs 3	
5239.7? 5			
5241.0 4	0+	>690 fs	J^{π} : J^{π} =0 ⁺ established by 1996Ye01 on the basis of $\sigma(E)$ and the isotropy of the 2626.6 γ . The authors propose that this state is the lowest-spin member of the expected quartet of two-phonon octupole states At an energy about twice that of the 3 ⁻ 2614 state. This is the same state As that seen In (d,p γ) and (p,p' γ) At 5241 2. In those reactions, only the E0 branch to the g.s. is seen. This g.s. branch is not seen here since only gammas were studied.
5245.252 22	3-	17 fs +7-6	
5254.02? 7			E(level): proposed by the evaluator on the basis of data from $(d,p\gamma)$ and $(x,x'\gamma)$. In both reactions, the level is defined by a deexciting 1779 γ . The 1778.94 γ , seen but unplaced by 2005YaZW, May Be the corresponding transition In $(n,n'\gamma)$.
5276.426 24	4-	44 fs +6-5	
5280.49 3	0-	>319 fs	
5286.486 17	2,3	76 fs 7	
5291.81 13	1	<2.1 IS	J^{n} : J=1 from $\gamma(\theta)$ (19/9Co02).
5317.042 18	(3^{+})	>690 IS 22 fo ± 27 18	
5247 272 18	8 ⁻	32 18 + 37 - 10 28 A fo 14	
5382 83 3	5	20.4 is 14 37 fs +7-6	
5384 58 3	3-	76 fs 14	
5481 88 3	5-	90 fs 14	
5491.54 3	5	125 fs + 35 - 21	E(level): see Adopted Levels for proposed doublet.
5511.78 14	1-	<3.5 fs	J^{π} : J=1 from $\gamma(\theta)$ (1979Co02).
5516.716 23	3-	40.9 fs 21	
5545.50 <i>3</i>	(5 ⁻)	37 fs +8-6	
5548.115 23	2-	83 fs 7	
5561.31 5	2+	38 fs 4	
5563.73 4	3-	44 fs +9-7	
5599.46 5	0-	>159 fs	
5639.55 9	1-	0.13 ps + 12 - 5	J^{n} : J=1 or 2 for E=5640.5 <i>10</i> from $\gamma(\theta)$ (1979Co02).
5641.98 20	1,2	< 5.5 IS	J ^{<i>i</i>} : J=1 or 2 for E=5640.5 <i>10</i> from $\gamma(\theta)$ (1979C002).
5648.99 0	3,4 5-	3/1s + 13 - 10	
5675 360 23	3 - 34	$51 18 \pm 70$ 13 fs ± 6 5	
5075.509 25 5000	2,3,4	15 18 +0-5	
5600 110 22	0 4+	16 fs 1	
5694 23 12	+ 7-	40 18 4 58 fs $\pm 84 - 30$	
5715 51 9	2+	48 fs 9	
5721.52.4	- 7-	28 fs + 9 - 7	
5777.98 4	· 2 ⁻ .3 ⁻	15.9 fs <i>14</i>	
5783.22 7	,-	41 fs +22-14	
5789.34 4	$2^+, 3^+, 4^+$	40 fs +4-3	

²⁰⁸Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		Comments
5799.41 9		>690 fs		
5805.0 <i>3</i>	1	5.1 fs +11-10	J ^{π} : J=1 from $\gamma(\theta)$ (1979Co02).	
5813.27 5	3-	22 fs +4-3		
5819.49 20	$1^+, 2^+$	222 fs +42-35		
5844.39 20	1+	<2.1 fs		
5873.572 <i>23</i>	3-	13.2 fs +21-14		
5885.55 4	3-	13.9 fs 14		
5918.28 4	3-,4,5-	173 fs +56-42		
5923.75 <i>3</i>	2-	104 fs +90-42		
5946.59 20	1-	<1.4 fs	J ^π : J=1 from $\gamma(\theta)$ (1979Co02).	
5968.53 8	4-	7.6 fs +42-35		
6009.77 <i>3</i>	3-	11 fs +5-4		
6011.64 6		57 fs +13-11		
6086.19 8	1-	37 fs +25-15		
6101.1 <i>10</i>	(5^{+})	>690 fs		
6147.9? 8				
6243.32? 8				
6255.67? 6	2+			
6274.96 20	3-	12 fs +16-10		

[†] From a least-squares fit to the $E(\gamma)$ data.

[‡] Spin and parity values are those given In Adopted Levels. Values determined from this experiment are given In comments.

[#] From 2005YaZW based on Doppler-shift attenuation method. These data supersede those of 1998Ye02.

^(a) 2005YaZW propose a level At 5075 deexcited by transitions with energies 868, 894, 1113, and 1366. In $(d,p\gamma)$ there is a level proposed At 5075 with a single deexciting transition with energy 1367. The branchings In $(n,n'\gamma)$ are such that the other transitions would have been observed. The evaluator assumes that there are two levels At this energy, the 5075.5 level, deexcited by the 1367 γ , corresponding to the level In $(d,p\gamma)$, and the 5074.803 level, seen only In $(n,n'\gamma)$. The evaluator takes $E\gamma(1367\gamma)$ from $(d,p\gamma)$ since the transition May Be a doublet, with placement also from the 5492 level. See comment on that level In Adopted Levels.

[&] On the basis of data In $(d,p\gamma)$, the evaluator introduces a level At 5688. In $(d,p\gamma)$, a 5687 level is shown deexciting via transitions with energies 1561.0 *10*, 1726.0 *10*, and 1767.9 *10*. 2005YaZW show unplaced transitions with energies 1728.7 2 and 1767.4 *10* with an intensity ratio consistent with that In $(d,p\gamma)$. If one includes 50% of the 1561 γ , placed entirely from the 5037 level by 2005YaZW, then the branching of this transition from both levels agrees well with $(d,p\gamma)$. See comment on the 1561 γ from the 5037 level. Note, however, that the excitation energies deduced from the 1728.7 and 1767.4 transitions are somewhat inconsistent. The energy for this placement of the 1561 γ is from $(d,p\gamma)$.

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	Comments
^x 185.90 12	0.032 9						
211.51 2	1.3 3	3919.971	6-	3708.472 5-	M1(+E2)	+0.04 +7-6	I _γ : I _γ /I _γ (722γ)=0.80 6 (1990Go33). Mult.: from Adopted Gammas. δ : the large solution is ruled out by ce data In β^- decay.
232.12 ^b 6	0.021 ^b 5	5092.99	8+	4860.87 8+			Additional information 16.
233.32 ^b 7	0.19 ^b 5	3708.472	5-	3475.077 4-			
238.22 3	0.54 13	3946.581	4-	3708.472 5-	[D(+Q)]	+0.05 14	Mult.: the large solution is <-5.2, >+10, an unlikely alternative. Other: -0.06 6 (1990Go33).

γ ⁽²⁰⁸Pb) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [#]	$\delta^{@}$	Comments
250.14 7 252.755 <i>12</i>	0.26 7 1.4 <i>3</i>	4860.87 3961.172	8 ⁺ 5 ⁻	4610.750 8 ⁺ 3708.472 5 ⁻	M1+E2	-0.35 10	I _{γ} : I γ :I γ (763 γ)=39 4:100 3 (1990Go33).
							Mult.: from Adopted Gammas. δ : the large solution is ruled out by ce data In β^- decay.
257.06 5 ^x 273.85 13	0.21 <i>5</i> 0.014 <i>5</i>	4867.92	7+	4610.750 8+			
277.371 5	3.3 8	3475.077	4-	3197.713 5-	M1+E2	+0.052 43	Mult.: from Adopted Gammas. E_{γ} : from $E_{\gamma}(860\gamma) =$ $E_{\gamma}(277\gamma) + E_{\gamma}(583\gamma)$. The authors report 277.368 <i>10</i> . I_{γ} : $I_{\gamma}/I_{\gamma}(860\gamma) = 0.61 4$ (1990Go33). δ : the large solution is ruled out by ce data In β^- decay. Other: +0.038 <i>20</i> (1990Go33).
x283.7 4 x286.82 12 x297.61 9 x318.0 3 x326.17 0	0.006 <i>3</i> 0.017 <i>5</i> 0.027 <i>7</i> 0.012 <i>5</i> 0.17 <i>4</i>						
327.44 20	0.030 4	5195.38	7+	4867.92 7+			E_{γ} , I_{γ} : E γ is from (d,p γ) and I γ is from I γ /I γ (771 γ)=0.189 35 In (d,p γ). The 327 γ is not reported In (n,n' γ), but would perhaps Be unresolved from the unplaced 326.17 γ with I γ =0.17 4.
x353.01 <i>11</i> 362.785 ^g <i>13</i>	0.07 2 0.52 ^g 11	4323.947	4+	3961.172 5-			I _γ : I _γ :I _γ (1126γ)=16.2 <i>16</i> :100 <i>3</i> (1990Go33). Additional
363.235 ⁸ 11	0.13 ⁸ 3	4358.670	4-	3995.440 4-			information 2. Additional information 3
x365.3 2 x377.17 14 386.3 ^m 10 x392.5 3 x395.0 4 x206.5 2	0.014 <i>4</i> 0.027 7 0.046 ^m 10 0.022 7 0.013 5	4867.92	7+	4480.749 6-	[D+Q]		δ : +0.13 +5-6 or +11 +20-4.
412.17 <i>4</i> 416.79 <i>6</i>	0.33 8 0.14 3 0.11 2	4708.725 4125.348	5- 5-	4296.577 5 ⁻ 3708.472 5 ⁻	[D(+Q)]	+0.1 +8-4	
436.41 <i>10</i> 438.90 <i>14</i>	$0.026\ 12$ $0.053\ 12$ $0.055\ 13$	4698.318 5280.49	3- 0-	4261.914 4 ⁻ 4841.55 1 ⁻			
443.536 ^k 21	0.35 ^{<i>k</i>} 8	4698.318	3-	4254.788 3-	[D+Q]	-0.13 +16-14	Additional information 6.
444.28 ^k 4	0.12 ^k 3	4867.92	7+	4423.654 6+			Additional information 10.
[*] 449.70 8 463.322 ^h 15	$0.08\ 2$ $0.058^{h}\ 12$	4383.288	6-	3919.971 6-	[D+Q]	-0.69 +15-19	Additional information 4.
x465.3 2 471.498 <i>14</i> 473.98 <i>5</i>	0.043 <i>14</i> 0.54 <i>11</i> 0.18 <i>4</i>	3946.581 4680.271	4 ⁻ 7 ⁻	3475.077 4 ⁻ 4206.281 6 ⁻	[D+Q] [D+Q]		δ : -0.06 +17-14 or +0.9 +3-12. δ : +0.27 +10-9 or +5.2 +43-19.

γ ⁽²⁰⁸Pb) (continued)</sup>

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	Comments
478.55 13	0.09 2	5339.48	8+	4860.87	8+			I_{γ} : see comment In Adopted Gammas on branching from the 5339 level.
482.24 2	0.26 5	5092.99	8+	4610.750	8+			
484.64 ^{<i>f</i>} 4	0.020 ^f 5	4867.92	7+	4383.288	6-			Additional information 11.
485.95 ^{<i>f</i>} 15	0.060^{f} 15	3961.172	5-	3475.077	4- 5-			S. 10.02.10 0 14.85
^x 505.58 3	0.63 12	4200.281	0	5708.472	5	[D+Q]		0: +0.05 10 01 -9 +4 - 65.
510.72 ^d 6	15 ^d 3	3708.472	5-	3197.713	5-	M1+E2	-0.52 +5-7	Mult.: from Adopted Gammas.
^x 531.25 4 ^x 548 8 2	0.10 2							
553.414 8	0.69 12	4261.914	4-	3708.472	5-	[D+Q]		I _{γ} : I γ :I γ (1647 γ)=62 9:100 4 (1990Go33).
								δ : +0.03 4 or -15 +5-32. Other:
555.63 6	0.09 2	4761.958	6-	4206.281	6-			+0.02 0 (19900055).
573.38 12	0.058 13	4610.750	8 ⁺ 2 ⁻	4037.447	7- 4-	[D(+Q)]		δ : +0.15 +30-26.
370.037 13	0.48 9	4031.130	3	5475.077	4			1_{γ} : $1_{\gamma}/1_{\gamma}(1457\gamma)=0.091$ 14 (1990Go33).
^x 579.53 8	0.13 3				a-			
583.1870 2 584.620 15	$57^{\circ} 10$ 0.057° 10	3197.713 5195.38	5 ⁻ 7 ⁺	2614.524	3- 8+			Additional
561.62 15	0.057 10	5175.50	,	1010.750	0			information 19.
x585.25 <i>13</i> 588.096 <i>6</i>	0.20 <i>5</i> 1.1 <i>2</i>	4296.577	5-	3708.472	5-	[D+Q]	-0.18 +9-8	δ : other: -0.02 <i>18</i> or +0.8 +3-6 (1990Go33).
x603.4 5 x608.44 <i>k</i> 13 x610.60 7 x632.8 4 636.57 3 638.48 2 c47 5 6	0.030 <i>12</i> 0.019 <i>3</i> 0.066 <i>13</i> 0.015 <i>7</i> 0.15 <i>3</i> 0.23 <i>4</i>	4761.958 4962.429	6^{-} $4^{(-)},5^{(+)}$	4125.348 4323.947	5 ⁻ 4 ⁺			
647.25 9 650.207 14	0.041 8 0.69 12	4698.318 4125.348	3 5-	4051.136 3475.077	3 4 ⁻	[D+Q]		I_{γ} : I
								 (1990Go33). δ: -0.05 3 or -5.5 +8-12. Other: -0.04 4 or -6.0 +18-11 (1990Go33).
x656.72 8 x660.76 4 678.7 2 x692.85 9 x693.6 3 x694.96 8	0.061 <i>11</i> 0.079 <i>14</i> 0.030 7 0.14 2 0.09 2 0.16 <i>3</i>	5923.75	2-	5245.252	3-			
x696.85 8	0.20 3							
702.18^{v} 3	0.12 2 $0.043^{v} 15$	5085.473	7-	4383.288	6-			Additional
702.885 ^v 17	0.038 ^v 5	4698.318	3-	3995.440	4-			information 15. Additional
705.33 2	0.38.6	4180 416	5-	3475 077	4-	[D+0]		information 7. $I_{x}: I_{y}/I_{y}(983y)=0.086.11$
x708 5 3	0.11.2	1100.110	5	5175.077		[D ; Q]		(1990Go33). δ : -0.04 7 or -6.3 =16-37.
100.0 0	V.11 2							

γ ⁽²⁰⁸Pb) (continued)</sup>

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	Comments
^x 713.22 8	0.080 14		< ±	2500 452 5-		0.05.5	
715.23 2	0.31 5	4423.654	6^{+}	3/08.4/2 5	[D(+Q)]	-0.05 7	I_{γ} : $I_{\gamma}/I_{\gamma}(1226\gamma)=0.094$ 15 (1990Go33).
722.252 8	1.5 2	3919.971	5 6 ⁻	4234.788 3 3197.713 5 ⁻	M1+E2	+0.61 +7-6	Mult.: from Adopted Gammas. δ : the large solution is ruled out by ce data In β^- decay. Other: +0.65 9 (1990Go33).
^x 724.6 3 728.80 6 ^x 739.86 5	0.046 <i>13</i> 0.069 <i>12</i> 0.064 <i>11</i>	5339.48	8+	4610.750 8+			
747.551 ^e 20	0.35 ^e 6	4708.725	5-	3961.172 5-			Additional
748.845 ^e 12	2.2 ^e 4	3946.581	4-	3197.713 5-	[D(+Q)]	+0.07 +5-4	δ : the large solution is $\langle -15, \rangle + 31$, an unlikely alternative. Other: $+0.072\ 25\ (1990Go33)$.
*754.23 8	0.076 13	4680 271	7-	2010 071 6-			$\delta_{1} = 0.10 + 4.2 \text{ or } + 5.2 + 15.12$
763.429 9	3.2 5	3961.172	5-	3197.713 5 ⁻	[D+Q] M1+E2	-0.21 +5-6	Mult.: from Adopted Gammas. δ: the large solution is ruled out by ce data In β^- decay. Other: -0.13 7 (1990Go33).
769.78 2 ^x 770.5 3	0.39 6 0.34 7	5193.435	5+	4423.654 6+			
771.74 <mark>j</mark> 20	0.16 ^j 3	5195.38	7+	4423.654 6+			
772.316 ^j 15	0.16 ^j 3	4480.749	6-	3708.472 5-	[D+Q]		I_{γ} : Iγ/Iγ(1283γ)=0.18 5 (1990Go33). δ: +0.22 +7-6 or +5.2 +34-14. Additional information 5.
779.94 ^{<i>a</i>} 2	0.20 3	4254.788	3-	3475.077 4-			Additional information 1.
782.83 <i>2</i> 786.891 <i>10</i>	0.19 <i>3</i> 0.76 <i>11</i>	4868.41 4261.914	$0^+ 4^-$	4085.58 2 ⁺ 3475.077 4 ⁻	[D+Q]		I _γ : Iγ/Iγ(1647γ)=0.64 <i>6</i> (1990Go33). δ : -0.17 8 or +1.3 +3-2.
789.358 <i>15</i> 797.741 <i>10</i>	0.37 <i>5</i> 0.90 <i>13</i>	5213.013 3995.440	(6) ⁺ 4 ⁻	4423.654 6 ⁺ 3197.713 5 ⁻	[D+Q]	+0.34 5	I _γ : I _γ /I _γ (1381γ)=0.297 <i>12</i> (1990Go33). δ: the large solution is +4.4 9, an unlikely alternative
^x 800.99 7	0.079 12						antimative.
808.07 <i>4</i> 821.540 <i>13</i>	0.068 <i>11</i> 0.72 <i>10</i>	5037.551 4296.577	3- 5-	4229.581 2 ⁻ 3475.077 4 ⁻	[D+Q]		I _γ : I _γ /I _γ (588γ)=0.64 4 (1990Go33). δ: -0.10 4 or -4.2 7. Other: -0.11 4 (1990Go33).
823.37 <i>9</i> 830.55 <i>4</i>	0.083 <i>13</i> 0.088 <i>13</i>	4860.87 4867.92	8+ 7+	4037.447 7 ⁻ 4037.447 7 ⁻	[D+Q]		δ: -0.40 +36-29 or +1.0 5.
x835.78 13	0.04 2	1007 117	-	2107 712 5-	[0(-0)]		
x842.9 6 x846.79 2	1.5 2 0.017 6 0.21 3	4037.447		3197.713 5	[Q(+O)]		Mult.: $\delta(M3/E2) = +0.010 + 21 - 31$.
848.88 <i>4</i> 860.557 <i>4</i>	0.12 2 7.0 <i>10</i>	4323.947 3475.077	4+ 4-	3475.077 4 ⁻ 2614.524 3 ⁻	M1+E2	-0.021 <i>21</i>	 E_γ: calibration value from β⁻ decay. The authors report 860.545 8. Mult.: from Adopted Gammas. δ: the large solution is ruled out by ce data In β⁻ decay. Other: +0.015 18
^x 868.15 10	0.17 <i>3</i>						(1990Go33).

γ ⁽²⁰⁸Pb) (continued)</sup>

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	Comments
868.522 ⁿ 24	0.16 ⁿ 2	5074.807		4206.281	6-			Additional
869.43 ⁿ 20	0.37 ⁿ 5	5193.435	5+	4323.947	4+			mormation 14.
873.635 15	0.32 4	5079.915	6 ⁻	4206.281	6 ⁻			S. +0.02 + 4, 2 10 + 0, 75
x881.45 3	0.33 3	5085.475	/	4206.281	0	[D+Q]		6: +0.03 + 4 - 3 of $-19 + 9 - 73$.
883.605 9	1.4 2	4358.670	4-	3475.077	4-	[D+Q]		δ : -0.22 +6-7 or +1.4 +3-2.
892.25 2	0.25 3	5216.216 5074 807	4+	4323.947	4 ⁺ 5 [−]			
^x 898.49 12	0.14 2	507 1.007		1100.110	5			
x899.25 6	0.13 2							
921.4 2	0.29 4 0.022 5	5245.252	3-	4323.947	4+			
927.650 8	2.2 3	4125.348	5-	3197.713	5-	[D+Q]		δ : -0.15 5 or +0.90 +10-14. Other:
^x 940.72 8	0.049 7							$-0.06\ 6\ \text{or}\ +0.90\ 13\ (1990Go33).$
949.83 2	0.27 4	5923.75	2^{-}	4973.918	3-			
x954.60 13	0.043 7	4011 345	4	30/6 581	<u> </u>			
x977.46 <i>11</i>	0.008 10	4711.040	4	5740.581	4			
^x 978.53 <i>13</i>	0.050 7	4100 416	5-	2107 712	5-			S. 0.12 + 6 5 - 7 + 0.96 + 14 - 12 Other
982.709 10	2.6 3	4180.416	2	3197.713	Э	[D+Q]		0: -0.13 + 0 - 3 or $+0.86 + 14 - 13$. Other: +0.15 15 (1990Go33).
986.41 9	0.050 8	5037.551	3-	4051.136	3-			
993.105 <i>12</i> 1000 681 ^{<i>a</i>} <i>13</i>	0.66 8 0.56 7	5317.042 4708 725	(3 ⁺) 5 ⁻	4323.947	4⊤ 5−	[D+0]	-0.19 + 7 - 8	E.: 1990Go33 report $E_{\gamma}=1000.51.12$
10001001 12	0.007	1100.120	5	5700.172	5		0.17 17 0	The least-squares adjustment gives $E\gamma$ =1000.251 19. Additional
1008.558 10	2.1 3	4206.281	6-	3197.713	5-	[D+Q]		δ : +0.18 +2-1 or +8.6 +14-7. Other: +0.195 15 (1990Go33).
^x 1011.6 3 ^x 1023.75 12 ^x 1042.8 2	0.020 <i>4</i> 0.062 <i>10</i> 0.031 <i>11</i>							
$1050.91^{r} 2$	0.152^{r} 16	5280.49	0-	4229.581	2-			
x1062.2 4	0.025 11							
1064.15 ^c 2	0.25 ^c 3	4261.914	4-	3197.713	5-	[D+Q]		δ : -0.40 +10-14 or -1.9 +5-4. Other: +0.02 3 (1990Go33).
1069.72 ^{<i>a</i>} 4	0.081 10	5276.426	4-	4206.281	6-			Additional information 23.
^x 1076.9 4	0.010 3							
1093.94 ^{<i>u</i>} 4 1098.85 4	0.29 3	3708.472	5- 5-	2614.524	3- 5-	[Q(+O)]		δ: δ(M3/E2) = -0.01 I3.
^x 1101.28 9	0.049 7	4270.377	5	5171.115	5			
^x 1105.65 <i>14</i>	0.055 8							
11106.90 <i>12</i> 1112 27 ³⁵ 8	0.081 10 $0.033^3 3$	6086 19	1-	4073 018	3-			
1112.27 0 1113.57 ³ 3	$0.28^3 4$	5074.807	ĩ	3961.172	5-			
1126.236 <i>13</i>	5.1 6	4323.947	4+	3197.713	5-	[D+Q]	+0.042 21	δ: other: +0.003 <i>18</i> (1990Go33).
1145.551 14 1155.00 2	0.011 10	5384.58	3-	4229.581	2-			
x1158.12 6 1160.90 2	0.116 <i>13</i> 0.56 6	4358.670	4-	3197.713	5-	[D+0]		I_{γ} : $I_{\gamma}/I_{\gamma}(884\gamma)=0.36\ 5\ (1990Go33).$
					-			

γ ⁽²⁰⁸Pb) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
							δ : +0.19 +6-5 or +10 +13-3. Other: +0.30 10 or +5.2 +46-20 (1990Go33).
^x 1163.93 <i>11</i> 1185.571 <i>13</i>	0.052 7 1.6 2	4383.288	6-	3197.713	5-	[D+Q]	δ : +0.031 +22-10 or -15 +4-8. Other: +0.063 24 (1990Go33).
^x 1189.0 2 1194.114 ^a 22	0.021 <i>4</i> 0.070 <i>8</i>	5245.252	3-	4051.136	3-		I_{γ} : the branching is a factor of about three higher than In (d,p γ).
1199.62 2 x1202.8 3	0.37 <i>4</i> 0.028 <i>8</i>	5195.056	3-,4-	3995.440	4-		Auditonal mormation 22.
1223.27 2	0.93 10	4698.318	3-	3475.077	4-	[D+Q]	δ : +0.07 +7-6 or <-8.6, >+47. Other: 0.00 9 (1990Go33).
1225.41 ^{<i>i</i>} 7	0.42^{i} 4	5923.75	2-	4698.318	3-		Additional information 29.
1225.916^{i} 13 x1234.04 8	$3.8^{i} 4$ 0.063 8	4423.654	6+	3197.713	5-	[D(+Q)]	δ : -0.010 +20-11. Other: +0.030 17 (1990Go33).
1236.79 <i>4</i> <i>x</i> 1239.433 <i>14</i> <i>x</i> 1247 24 8	0.25 <i>3</i> 0.08 <i>3</i> 0.052 6	4711.819	4-	3475.077	4-	[D+Q]	δ : -0.41 15 or -1.9 +11-6.
1252.98 <i>4</i> <i>x</i> 1257.3 <i>2</i> <i>x</i> 1261.54 <i>11</i> <i>x</i> 1275.35 <i>8</i>	0.032 0 0.22 2 0.037 8 0.034 5 0.040 5	5214.00	(5 ⁻)	3961.172	5-		
1275.5 ⁵ 5	0.040 5	5195.38	7+	3919.971	6-		E_{γ} : from (d,p γ). 2005YaZW show an unplaced transition with E_{γ} =1275.35 8 and I_{γ} =0.040. The energy fit is good; however, the branching is a factor of three higher than In (d,p γ). The evaluator assumes that part of I_{γ} (1275 γ) can Be placed here
1283.031 <i>12</i>	1.5 2	4480.749	6-	3197.713	5-	[D+Q]	δ : +0.031 +11-21 or -19 +6-12. Other: +0.05 3 (1990Go33).
1283.60 ⁵ 4		5545.50	(5 ⁻)	4261.914	4-		E_{γ} , I_{γ} : there is a 1283γ placed from this level In (d, pγ), with Iγ/Iγ(1837γ)=0.44 9. One thus expects such a transition In (n,n'γ) with E_{γ} =1283.60 4 from the level energies, and Iγ=0.047 10. There is a 1283.074 12 transition with Iγ=1.5 2 placed from the 4481 level. A small part of that transition May belong here.
^x 1285.6 12	0.038 15						of that transition way belong here.
^x 1290.15 9	0.064 7						
1297.86 <i>3</i> 1301.74 <i>14</i> *1313 28 <i>8</i>	0.15 2 0.033 6 0.063 7	5721.52 5339.48	7^{-} 8 ⁺	4423.654 4037.447	6+ 7-		
1316.690 ⁵ 22		5675.369	2 ⁻ ,3,4	4358.670	4-		E_{γ} , I_{γ} : 2005YaZW report an unplaced transition with E_{γ} =1317.99 5 and I_{γ} =0.068 7. In (d,p γ) there is a 1317.0 10 transition placed from the 5675 level. From $I_{\gamma}(1317\gamma)/I_{\gamma}(3060\gamma)$ =0.049 20 In (d,p γ), one expects I_{γ} =0.015 6 for a 1317 transition from the 5675 level In (n,n' γ). The evaluator suggests that part of the 1318 γ May belong here. E_{γ} is from
^x 1317.99 5 1333.5 3 ^x 1335.94 5	0.068 7 0.15 <i>3</i> 0.142 <i>14</i>	5384.58	3-	4051.136	3-		the level energies.
x1351.64 7	0.060 7	5401.00	F -	4105.040	<i>-</i>		
1356.49 4	0.111 11	5481.88	5	4125.348	5		E_{γ} : not reported in (d,p γ).

				²⁰⁸ F	Pb(n,r	$\mathbf{n}^{\prime}\gamma)$ (contin	ued)					
γ ⁽²⁰⁸ Pb) (continued)												
${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	Comments				
1367.0 10	0.28 3	5075.5		3708.472	5-			E_{γ} : from (d,p γ). See comment on the 5075.5 level.				
1369.87 <i>4</i> 1380.889 <i>12</i>	0.127 <i>12</i> 2.9 <i>3</i>	5599.46 3995.440	0- 4-	4229.581 2614.524	2- 3-	[D(+Q)]	+0.000 +31-21	δ: the large solution is -6.7 +8-12, an unlikely alternative. Other: +0.057 16 (1990Go33).				
1387.13^{z5}_{z3} 6	0.031^{2} 9	5648.99 5382 83	3-,4-	4261.914	$4^{-}_{4^{-}}$							
1387.87 ^{z5} 8	0.061^{2} 3	6086.19	1-	4698.318	- 3 ⁻							
[*] 1393.89 <i>13</i> 1399.93 <i>6</i>	0.041 5	5783.22		4383.288	6-							
1408.7 3 1413.026 <i>13</i>	0.030 5 2.0 2	4610.750	8+	3197.713	5-							
1413.509 ⁵ 22		5675.369	2-,3,4	4261.914	4-			E _γ ,I _γ : 2005YaZW report a transition with Eγ=1413.026 13 and Iγ=2.0 2 placed from the 4611 level. In (d,pγ) there is a 1413.0 10 transition placed from the 5675 level. From Iγ(1413γ)/Iγ(3020γ)= 0.10 2 In (d,pγ), one expects Iγ=0.031 6 for a 1413 transition from the 5675 level In (n,n'γ). Such a transition would Be completely masked by the strong 1413.026γ. The evaluator suggests that part of Iγ(1413γ) May belong here. Eγ is taken by the evaluator from the level energies.				
1420.11 ^y 4	0.18 ^y 2	5545.50	(5 ⁻)	4125.348	5-			Additional information 25.				
1420.574 ⁵ 25		5675.369	2-,3,4	4254.788	3-			E_{γ} , I_{γ} : 2005YaZW report a transition with E_{γ} =1420.24 <i>3</i> and I_{γ} =0.18 <i>2</i> placed from the 5545 level. In (d,p γ) there is a 1420.0 <i>10</i> transition placed from the 5675 level. From I_{γ} (1420 γ)/ I_{γ} (3020 γ)= 0.21 <i>5</i> In (d,p γ), one expects I_{γ} =0.064 <i>15</i> for a 1420 transition from the 5675 level In (n,n' γ). If I_{γ} (1420 γ) from the 5545 level is reduced by this amount, the branching from that level will Be brought into agreement with (d,p γ). See comment on the 1420 γ from the 5545 level. E γ is taken from the level energies.				
1436.602 12	3.3 3	4051.136	3-	2614.524	3-	[D+Q]		δ : +1.7 +3-2 or -0.12 +7-6. Other: -0.05 5 (1990Go33)				
^x 1441.1 3 ^x 1444.04 9 ^x 1454.07 2 ^x 1462.27 10 ^x 1464.8 2 ^x 1465.40 11	0.040 8 0.054 7 0.28 3 0.064 7 0.109 11 0.114 14											

$^{208} \textbf{Pb}(\textbf{n,n}'\gamma)$ (continued)

γ ⁽²⁰⁸Pb) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	Comments
1471.5 <i>4</i> ^{<i>x</i>} 1486.82 <i>5</i> ^{<i>x</i>} 1498.06 <i>7</i>	0.019 6 0.093 9 0.123 12	4085.58	2+	2614.524	3-			
1498.828 ^{<i>l</i>} 17	0.095 ¹ 8	4973.918	3-	3475.077	4-			Additional information 12.
1500.49 ^{<i>l</i>} 3 1505.43 3 1511.00 2	0.285 ^l 23 0.21 2 0.35 3	4698.318 5214.00 4708.725	3 ⁻ (5 ⁻) 5 ⁻	3197.713 3708.472 3197.713	5- 5- 5-	[D+O]		I _γ : Iγ/Iγ(1223γ)=0.36 7 (1990Go33). I _ν : Iγ/Iγ(1001γ)=0.61 8 (1990Go33).
^x 1513.83 <i>10</i> ^x 1521.2 <i>4</i>	0.097 <i>9</i> 0.031 <i>9</i>							δ : -0.32 +10-11 or +1.2 +4-2.
1523.18 ¹ 4	0.028 ¹ 18	5777.98	2-,3-	4254.788	3-	[D+Q]	-1.3 +6-42	Additional information 27.
1523.64 ¹⁵ 6 ^x 1529.4 2 ^x 1533.46 6 ^x 1546.5 5 ^x 1552.8 3	0.066 ¹ 16 0.069 7 0.132 12 0.031 10 0.050 12	5648.99	3-,4-	4125.348	5-			
1561.0 ^{w5} 10	0.076^{W} 7	5688? 5037 551	6^{-}	4125.348	5- 4-			Additional
15(4.00.2	0.070 7	4761.059	5	2107.712	+ ~-			information 13.
1564.29 <i>3</i> 1567.97 <i>4</i>	0.59 5 0.19 2	4761.958 5276.426	6 4 ⁻	3197.713 3708.472	5 5-			
1571.49 4	0.143 12	5491.54	(5-)	3919.971	6-			
¹ 584.35 <i>10</i> ^x 1598.33 <i>6</i>	0.0374 0.0938	5545.50	(5)	3961.172	Э			
1598.88 ⁵ 4	0.026.4	5545.50	(5 ⁻)	3946.581	4-			E_{γ} , I_{γ} : there is a 1599 γ placed from this level In (d, $p\gamma$), with $I\gamma/I\gamma(1837\gamma)=0.38$ 8. One thus expects such a transition In (n, n' γ) with $E\gamma=1598.88$ 4 from the level energies, and $I\gamma=0.041$ 9. There is an unplaced transition with $E\gamma=1598.34$ 6 and $I\gamma=0.093$ 8. Part of that transition May belong here. Additional information 26.
1615.068 <i>15</i>	0.026 <i>4</i> 2.2 <i>2</i>	4229.581	2-	2614.524	3-	[D+Q]	+0.18 +9-10	Mult.: the large solution is <-11 , $>+10$, an unlikely alternative. Other: $+0.04$
^x 1623.4 2 ^x 1624.4 5 ^x 1630.9 2	0.029 7 0.040 7 0.037 6							5 61 7.6 (22 10 (12)00053).
1640.267 15	3.1 2	4254.788	3-	2614.524	3-	[D+Q]		δ : -0.21 +5-6 or +2.2 +4-3. Other: -0.11 5 (1990Go33).
1647.38 2 1652.270 ^x 13	1.29 <i>10</i> 0.153 ^x <i>12</i>	4261.914 5127.360	4 ⁻ 2 ⁻ ,3 ⁻	2614.524 3475.077	3- 4-	[D+Q]		δ: +0.021 +2 <i>I</i> -3 <i>I</i> or -7.2 + <i>I</i> 3- <i>I</i> 4. Additional information 17.
1653.55 ^{<i>x</i>} 6 1663.05 6 1669.0 2 <i>x</i> 1674.16 5 <i>x</i> 1680.5 2	x 0.074 7 0.027 5 0.092 8 0.022 4	5648.99 5658.52 5923.75	3 ⁻ ,4 ⁻ 5 ⁻ 2 ⁻	3995.440 3995.440 4254.788	4- 4- 3-			
1686.76 ² 15	0.037 ² 7	6009.77	3-	4323.947	4+			Additional information 31.

$^{208} \textbf{Pb}(\textbf{n,n}'\gamma)$ (continued)

γ ⁽²⁰⁸Pb) (continued)

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	J^{π}_i	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	Comments
$1693.2^{a5} 2$ x1702.9 4	0.029 <i>4</i> 0.014 <i>7</i>	5923.75	2-	4229.581	2-			
1709.6 2 1713.62 4 ^x 1719.89 6 ^x 1728.7 2	0.026 <i>4</i> 0.190 <i>14</i> 0.055 <i>5</i> 0.076 <i>7</i>	4323.947 4911.345	4 ⁺ 4	2614.524 3197.713	3 ⁻ 5 ⁻	[D+Q]		δ : -0.29 +10-5 or -2.7 +6-10.
1728.7 ⁵ 2 ^x 1731.15 10 ^x 1736 94 5	0.076 7 0.081 7 0.077 6	5688?	6-	3961.172	5-			
1744.12 2	0.188 14	4358.670	4-	2614.524	3-	[D+Q]		I _γ : I _γ /I _γ (884γ)=0.170 25 (1990Go33). δ : +0.04 +7-6 or -9 +3-10.
^x 1761.51 8 1764.71 3 ^x 1767.4 10	0.072 7 0.53 4 0.083 10	4962.429	4 ⁽⁻⁾ ,5 ⁽⁺⁾	3197.713	5-	[D+Q]	+0.78 +22-32	
1767.4 ⁵ <i>10</i> 1770.20 ^c 8 1774.25 <i>12</i>	0.083 <i>10</i> 0.066 ^c 5 0.146 <i>13</i>	5688? 5245.252 5694.23	6 ⁻ 3 ⁻ 7 ⁻	3919.971 3475.077 3919.971	6 ⁻ 4 ⁻ 6 ⁻	[D+Q]		δ : +0.04 17 or <-4.2, >11.
1776.09 <i>5</i>	0.61 4	4973.918	3-	3197.713	5-			I _γ : I _γ /I _γ (2359γ)=0.81 18 (1990Go33).
1778.94 ⁵ 7 1778.94 ⁵ 7 ^x 1782.41 9 ^x 1794.2 4 ^x 1798.85 8 ^x 1804.82 7 ^x 1809.5 4 ^x 1810.64 11 ^x 1814.0 3 ^x 1831.91 11	0.040 5 0.076 7 0.016 4 0.056 5 0.046 4 0.030 8 0.05 2 0.016 5 0.046 4	5254.02?		3475.077	4-			
1831.91 ⁵ 11	0.046 4	6086.19	1-	4254.788	3-			E_{γ} , I_{γ} : unplaced by 2005YaZW. An 1832 γ is placed from this level In both (d, $p\gamma$) and ($p, p'\gamma$). The branching agrees well with values In those two reactions. The energy is somewhat discrepant, however, and is not included In the least-squares fit. The least-squares adjustment gives E_{γ} =1831.30.8
1837.06 <i>4</i> <i>x</i> 1842.1 <i>3</i> <i>x</i> 1843.0 <i>2</i> <i>x</i> 1843.0 <i>2</i>	0.107 8 0.030 4 0.035 5 0.028 6	5545.50	(5 ⁻)	3708.472	5-			Lj-1051.57 0.
^x 1867.4 2 ^x 1869.8 2	$\begin{array}{c} 0.028 \ 0\\ 0.035 \ 4\\ 0.034 \ 4\\ 0.059 \ 5\\ 0.056 \ 7\end{array}$	6086.19	1-	4229.581	2-			
1872.23 ^{<i>a</i>5} 8 ^{<i>x</i>} 1876.8 2	0.096 7 0.018 4	5923.75	2-	4051.136	3-			
1882.09 <i>10</i> ^x 1910.86 <i>15</i> ^x 1914.9 <i>4</i>	0.047 <i>4</i> 0.034 <i>4</i> 0.018 <i>4</i>	5079.915	6-	3197.713	5-			
1924.19 9 *1926.8 7 *1942.58 7	0.057 5 0.014 5 0.069 5	6009.77	3-	4085.58	2+			

γ ⁽²⁰⁸Pb) (continued)

E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
^x 1950.99 <i>12</i>	0.023 3						
^x 1959.2 4	0.016 4						
$^{19//.909}_{100663a}$	0.045 4	5103 /35	5+	3107 713	5-		Additional information 18
^x 1999.66 <i>10</i>	0.094 8	5175.455	5	5177.715	5		Additional information 16.
2015.277 ^{<i>p</i>} 19	0.245 ^{<i>p</i>} 15	5213.013	$(6)^{+}$	3197.713	5-		Additional information 20.
2016.14 ^{<i>p</i>} 3	0.78 ^p 5	5214.00	(5 ⁻)	3197.713	5^{-}		Additional information 21.
^x 2017.60 2	0.17 2	(09(10	1-	4051 126	2-		
^x 2034.97 11	0.065 5	0080.19	1	4051.150	3		
2078.64 3	0.44 3	5276.426	4-	3197.713	5-		
2083.90 4	0.30 2	4698.318	3-	2614.524	3-		I_{γ} : $I_{\gamma}/I_{\gamma}(1223\gamma)=0.19$ 6 (1990Go33).
^x 2092.44 11	0.085 7	4711.010	4-	2614 524	2-		
2097.27 2 x2104.65.9	0.89 5	4/11.819	4	2614.524	3	[D+Q]	δ : +0.11 +3-4 or -23 +10-71.
x2112 5 × 1	0.75 0						
x2149.86 <i>12</i>	0.034 3						
^x 2159.9 6	0.007 3						
^x 2174.4 4	0.021 4						
*2184.81 11	0.037 4	5675 260	a- a 4	2455.055	4-		
2200.48 ³ 3	0.127 7	5675.369	2 ⁻ ,3,4	3475.077	4-	[D+Q]	E _{γ} : not seen In (d,p γ). E γ gives E(level)=5675.57 3, In disagreement with E(level)=5675.37 2 given by the 3060 γ .
x2214.0 2	0.046 7						$0: +0.18 \ 10 \ 01 > 0.7, <-25.$
^x 2219.6 2	0.033 4						
x2250.05 13	0.038 4						
2260.05 8	0.099 6	5968.53	4-	3708.472	5-		E_{γ} : from (d,pγ). 2005YaZW report E_{γ} =2260.40 6; however, $I_{\gamma}/I_{\gamma}(2771_{\gamma})$ compared with (d,pγ) suggests that only 25% of $I_{\gamma}(2260_{\gamma})$ belongs here.
^x 2277.7 3	0.025 4						
2279.51 ⁵ 20	0.025 4	6274.96	3-	3995.440	4-		E_{γ} , I_{γ} : 2005YaZW report an unplaced transition with E _γ =2277.7 3 and I _γ =0.025 4. In (d,p _γ) there is a 2278γ placed from this level with I _γ /I _γ (3660γ)=0.32 8. This compares with 0.54 10 In (N,n _γ) and suggests that At least part of the 2278γ could Be placed from the 6275 level In (n,n'γ). E _γ is taken from the level energies.
^x 2281.9 5	0.025 7						
x2284.8 2	0.035 5	5401 54		2107 712	<u>-</u>		5 . 0.16 . 6 . 5 10 04
2293.85 3	0.37 2	5491.54 4911 345	4	3197.713	5 3-	[D+Q] [D+O]	δ : +0.16 +0-5 or >+10, <-94. δ : -0.08 +4-5 or -4.7 +9-12
x2314.0 2	0.046 7	1911.515		2011.021	0		0. 0.00 17 5 01 1.7 15 12.
^x 2319.5 6	0.04 2						
2322.65 3	1.27 6	4937.19	3-	2614.524	3-	[D+Q]	δ : -0.2 <i>1</i> or +2.1 +7-6. Other: +0.3 +10-3 (1990Go33).
2324.329	0.152	5912 27	2-	2475.077	4		Additional information 28
2330.19 J 2338 7654 11	0.155 25 1.17 <mark>4</mark> 6	J01J.27 1053 202	3 3-	261/ 52/	4 3-	נטייעו	Additional information 26. $\delta_{1} = 0.13 \ H \text{ or } \pm 2.0 \pm 7 \pm 5.(1000 \text{ Geo}^{23})$
2336.703 14 2347.51 9 x2254 5 0	0.072 6	4955.505 5545.50	5 (5 ⁻)	3197.713	5 5 ⁻	[D+Q]	00.13 11 01 + 2.0 + 7 - 3 (19900033).
2359.38 2	0.59 3	4973.918	3-	2614.524	3-	[D+Q]	δ : -0.13 +10-8 or +1.8 +5-4.
2366.3 <i>3</i> ^x 2371.4 <i>4</i> ^x 2376.0 <i>4</i>	0.28 <i>3</i> 0.35 <i>4</i> 0.38 <i>4</i>	5563.73	3-	3197.713	5-		

$^{208} \textbf{Pb}(\textbf{n,n}'\gamma)$ (continued)

γ ⁽²⁰⁸Pb) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	Comments
x2380.4 5 2398.48 2 2422.997 15 x2444.0 7	0.29 <i>4</i> 0.42 <i>2</i> 0.95 <i>4</i> 0.57 <i>12</i>	5873.572 5037.551	3- 3-	3475.077 2614.524	4 ⁻ 3 ⁻	[D+Q]		δ: +0.9 +20-3 or +1.8 +10-12.
² 2445.84 5 2451.20 8 2460.80 5 ^x 2482 9 5	0.166 9 0.081 5 0.123 7 0.015 4	5648.99 5658.52	3 ⁻ ,4 ⁻ 5 ⁻	3197.713 3197.713	5- 5-			
2512.818 <i>12</i> 2534.68 <i>3</i> *2560.58 <i>11</i> *2568 8 5	0.013 4 0.81 4 0.257 12 0.089 7 0.016 4	5127.360 6009.77	2 ⁻ ,3 ⁻ 3 ⁻	2614.524 3475.077	3- 4-	[D+Q]	+1.3 +9-6	
2580.41 7 2601.69 2 ^x 2607.76 5	$\begin{array}{c} 0.010 \\ 0.156 \\ 10 \\ 0.80 \\ 4 \\ 0.35 \\ 2 \end{array}$	5195.056 5216.216	3 ⁻ ,4 ⁻ 4 ⁺	2614.524 2614.524	3- 3-	[D+Q]	+0.095 +45-43	
2614.511 ^t 10 x2622.52.7	100 4	2614.524	3-	0	0^+			
2625.2 ⁵ 5	0.195 11	5239.7?		2614.524	3-			E_{γ} : from (d,pγ). In (d,pγ), a transition with this energy is shown defining a level At 5239, separate from the 0 ⁺ level At 5241. 2005YaZW show a 2626.5 4 transition doubly placed from the 0 ⁺ level and from a 6102 level. The 6102 level is not seen In (d,pγ). All three postulated levels decay via a single 2626γ. IT is thus possible that part of the 2626γ In (n,n'γ) should Be placed from the 5239 level postulated In (d,pγ).
2626 ^{<i>q</i>} 2626.5 ^{<i>q</i>} 4 2630.71 2	0.156 ^{<i>q</i>} 6 0.62 ^{<i>q</i>} 3 0.96 4	6101.1 5241.0 5245.252	(5 ⁺) 0 ⁺ 3 ⁻	3475.077 2614.524 2614.524	4 ⁻ 3 ⁻ 3 ⁻	[D+Q]		δ : -0.19 8 or +2.1 5.
^x 2649.1 ^{&} 5 2662.02 5 2671.942 <i>13</i> 2672.8 ⁵ 8	0.066 <i>4</i> 0.66 <i>3</i>	5276.426 5286.486 6147.9?	4- 2,3-	2614.524 2614.524 3475.077	3 ⁻ 3 ⁻ 4 ⁻	[D+Q]	+0.05 +8-3	E _{γ} : from (d,p γ). 2005YaZW report a 2671.983 <i>13</i> placed entirely from the 5286 level. If part of I γ (2672 γ) could Be placed here, the 6147 level May Be populated also In (n,n' γ).
^x 2683.7 5 2702.42 3	0.020 7 0.150 7	5317.042	(3+)	2614.524	3-			I_{γ} : $I_{\gamma}/I_{\gamma}(993\gamma)=0.22$ 9
2720.57 <i>4</i> *2730 84 2	0.103 5	5918.28	3-,4,5-	3197.713	5-			(1990Go33).
$2732.729 \ 15$ $x_{2753.7}^{\&} \ 10$	0.66 3	5347.273	3-	2614.524	3-	[D+Q]		δ : +0.11 8 or +1.0 2.
2768.31 5 2770.038 ^s 24	0.317 <i>15</i> 0.48 ^s 2	5382.83 5384.58	3-	2614.524 2614.524	3- 3-	[D+Q]		E _{γ} : not reported In (d,p γ). δ : -0.20 +15-21 or -2.6 +10-18. Additional information 24.

208 Pb(n,n' γ) (continued)

γ ⁽²⁰⁸Pb) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f J	f^{π}	Mult. [#]	$\delta^{@}$	Comments
2770.92 ^{\$} 8	0.078 ^s 3	5968.53	4-	3197.713 5	5-			Additional
^x 2791.8 2	0.019 2							information 50.
x2796.7 3	0.018 3							
*2/9/.4 3	0.015 2							
×2/98./0	0.011 3							
x2840.0.2	0.0402							
x2044.0 2	0.021 2							
x2844.8 0	0.046.3							
2855.89 0	0.040 5	5/18/1 88	5-	2614 524 3	-	[0+0]	$\pm 0.042 \pm 53 \pm 32$	
x2877.29 7	0.052 3	5401.00	5	2014.524 5	,		10.042 155 52	
2902.17 2	0.50 2	5516.716	3-	2614.524 3	3-	[D+0]	-0.94 + 15 - 16	
2933.57 2	0.43 2	5548.115	2-	2614.524 3	3-			
2946.79 5	0.36 2	5561.31	2+	2614.524 3	3-	[D+Q]	+0.23 +23-17	
2949.18 <i>4</i>	0.49 2	5563.73	3-	2614.524 3	3-			
^x 2981.4 2	0.027 2							
^x 2993.66 10	0.027 2	5620.55	1-	2614 524 2	_			
3024.96 9	0.033 2	5639.55	1-	2614.524 3	5-			S 0.17 · 12 10 2.0 · 14 24
3034.52 9	0.0312	5658 52	3,4 5-	2014.524 3) 1 —	[D+Q]		0: -0.17 + 13 - 18 or $-3.8 + 14 - 34$.
3060.82.2	0.014 2	5675 369	$3^{-}34$	2614.524 3	, 	[D+0]		δ : +0.06 +11-4 or +1.1 +3-2
3075.57 2	0.293 11	5690.119	2,5,4 4 ⁺	2614.524 3	, ,-	[D+Q]	-0.031 + 31 - 21	0. 10.00 111 4 01 11.1 15 2.
^x 3080.9 4	0.013 2	0000110		2011021 0		[2, 1]	0.001 101 21	
3101.07 10	0.028 2	5715.51	2+	2614.524 3	3-			
^x 3134.6 4	0.010 2							
^x 3151.3 4	0.014 2							
3163.43 3	0.278 10	5777.98	2-,3-	2614.524 3	3-	[D+Q]		δ : -0.38 +7-8 or +4.4 +23-11.
3174.79 3	0.186 7	5789.34	2+,3+,4+	2614.524 3	3-			
*3185.6 4	0.008 2	5912 07	2-	2614 524 2				St. 0.50 + 12 14 are \$ +6.7 + 4.0
3198.72 4 ×3206 1 A	0.157 0	5815.27	3	2014.324 3)	[D+Q]		0: -0.59 + 12 - 14 or $>+0.7$, <-4.0 .
x3260.0 3	0.013 2							
x3269.08.3	0.096 7							
3271.00 3	0.298 11	5885.55	3-	2614.524 3	3-			
3303.65 7	0.043 2	5918.28	3-,4,5-	2614.524 3	3-			
3308.9 2	0.018 2	5923.75	2-	2614.524 3	3-			
^x 3318.6 4	0.005 2							
3397.09 ² 6	0.075^2 3	6011.64		2614.524 3	<u>;</u> –			
^x 3413.0 <i>3</i>	0.0091 15							
x3420.77 9	0.015 2							
x3438.53 11	0.034 2							
~3464.8 5 2471 7 4	0.0080 15	6096 10	1-	2614 524 2	<u>-</u>			
x3538 0 2	0.0132 0.0242	0080.19	1	2014.324 3	,			
x3559.4 8	0.006 2							
^x 3609.3 6	0.005 2							
x3620.4 3	0.016 2							
^x 3628.77 8	0.066 3							
3628.77 ⁵ 8	0.06 3	6243.32?		2614.524 3	3–			E _γ : the 3629γ is unplaced In (n,n'γ). In (d,pγ) a 3627.9 9 transition defines a level At 6242. This level May also Be excited In (n,n'γ).
^x 3641.13 6	0.082 4							
3641.13 ⁵ 6	0.082 4	6255.67?	2+	2614.524 3	<u>,</u> –			E_{γ} : the 3641 γ is unplaced In

γ ⁽²⁰⁸Pb) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
						$(n,n'\gamma)$. In $(d,p\gamma)$ a 3636 5 transition defines a level At 6250.
x2650 5 2	0.040.4					This level May also Be excited In $(n,n'\gamma)$.
*3659.5 2	0.048 4	(074.0)	2-	0614 504	2-	
3660.4 2	0.046 3	6274.96	3	2614.524	3	
*3662.61 <i>13</i>	0.037 4					
x3/19.6 3	0.027 2					
x3723.7 2	0.025 3					
×2720 6 4	0.020 3					
×274665	0.014 2					
×2774 0.0 3	0.009 2					
5774.8 0	0.000 2					
^{*4001.9} 6	4.00.14	1005 50	a +	0	0+	
4085.53 7	4.09 14	4085.58	21	0	0'	
*4218.0 2	0.018 2	4000 501	2-	0	0+	
4229.49 9	0.472	4229.581	2	0	0^{+}	I_{γ} : $I_{\gamma}/I_{\gamma}(1615\gamma)=0.26$ 3 (1990G033).
4324.3 4 X4405 1 2	0.016 2	4323.947	4	0	0.	
×4405.1 5	0.009 2					
4418.7 2	0.020 2	4609 219	2-	0	0+	
4097.88 14 x4722 6 0	0.048 3	4098.318	3	0	0	
4755.09 XA7A8 2 0	0.004 2					
x4809.6.5	0.0044 14					
4841 46 12	0.89 4	4841 55	1-	0	0^{+}	
x4873 1 5	0.09 + 0.011 - 2	4041.55	1	0	0	
x4933 5 2	0.023 2					
^x 4949.6 9	0.004 2					
4974.3 9	0.005 2	4973.918	3-	0	0^{+}	
5037.3 7	0.010 2	5037.551	3-	0	0^{+}	
5127.6 2	0.143 7	5127.360	$2^{-}, 3^{-}$	0	0^{+}	
^x 5133.7 6	0.017 3					
5245.0 7	0.010 2	5245.252	3-	0	0^{+}	
^x 5257.3 8	0.006 2					
5287.1 <i>3</i>	0.14 2	5286.486	2,3-	0	0^{+}	
5291.74 13	0.59 3	5291.81	1-	0	0^{+}	
x5346.0 4	0.019 3		-	0	0.±	
5384.42 14	0.081 5	5384.58	3-	0	0^+	
5511./0 <i>14</i>	0.51 3	5511.78	1	0	0	
~ 3321.2 14	0.000 3	5510 115	2-	0	O^+	
5560.8.2	0.012.2 0.130.7	5561 31	$\frac{2}{2^{+}}$	0	0+	
5630 7 2	0.130 7	5630 55	1-	0	0+	
5641 9 2	0.29.2	5641 98	1 2+	0	0^{+}	
x5714 3 2	0.243 13	5011.90	1,2	0	0	
5715.0.2	0.21313	5715 51	2^{+}	0	0^{+}	
5777.4 3	0.025 2	5777.98	$\bar{2}^{-}.3^{-}$	Ő	0^{+}	
5804.9 3	0.199 12	5805.0	1	0	0^{+}	
5819.4 2	0.189 12	5819.49	$1^+, 2^+$	0	0^{+}	
5844.3 2	0.176 12	5844.39	1+	0	0^{+}	
^x 5900.8 8	0.009 2					
^x 5909.5 6	0.009 2					
^x 5920.1 3	0.038 4					
5946.5 2	0.22 3	5946.59	1-	0	0^+	
^x 5965.4 3	0.023 3					
^x 6017.7 3	0.034 6					
6084.9 <i>10</i>	0.0021 12	6086.19	1-	0	0^{+}	
~6110.1 <i>4</i>	0.023 6					

$\gamma(^{208}\text{Pb})$ (continued)

 $\frac{E_{\gamma}^{\dagger}}{{}^{x}6117.67} - \frac{I_{\gamma}^{\ddagger}}{0.0103} - \frac{E_{i}(\text{level})}{E_{i}(\text{level})}$

^x6121.1 *11* 0.009 *3* ^x6188.0 *4* 0.0034 *12*

[†] From 2005YaZW, except where noted otherwise.

- [‡] Relative intensities from 2005YaZW normalized to $I\gamma(2614\gamma)=100 4$. Intensities are also reported by 1990Go33 and are given In comments In the form of branching ratios relative to the strongest transition.
- [#] Values In square brackets are the mults for which the δ data of 2005YaZW, based on $\gamma(\theta)$, apply.
- ^(a) From 2005YaZW based on $\gamma(\theta)$. Where two solutions are given, with No basis for ruling one out, the two values are given In comments. Other δ values, from 1990Go33, are also given In comments.
- & From 1990Go33. Not reported by 2005YaZW.
- ^a The energy fit is poor. The transition is not included In the least-squares fit.
- ^b 2005YaZW report E=233.32 7 with I γ =0.21 5 doubly placed from the 3708 and 5093 levels, with I γ divided on the basis of coincidence data. 90.0% of I γ belongs with the 3708 level. E γ for placement from the 5093 level is taken by the evaluator from the energy level difference.
- ^c Close-lying doublet with a <5% contribution from a ²⁰⁷Pb γ line. Note, however, for the 1064 γ from the 4262 level, that $I\gamma/I\gamma(1647\gamma)=0.194$ 28 compared with 0.044 7 In (d,p γ), suggesting that part of $I\gamma(1064\gamma)$ belongs elsewhere.
- d E γ is from Adopted Gammas. The authors' value of 510.819 6 is from a peak unresolved from annihilation radiation.
- ^{*e*} 2005YaZW report E=748.845 *12* with I γ =2.5 *4* doubly placed from the 3947 and 4709 levels with I γ divided on the basis of coincidence data. 86.0% of I γ belongs with the 3947 level. E γ for placement from the 4709 level is taken from the energy level difference.
- ^{*f*} 2005YaZW report E=485.06 9 with I γ =0.08 2 doubly placed from the 3961 and 4868 levels with I γ divided on the basis of coincidence data. 75.0% of I γ is placed with the 3961 level. A comparison with branching In (d,p γ) suggests that the split should Be closer to 50%–50%. This split would give reasonable agreement In branchings for both levels from the two reactions. E γ for placement from the 3961 level is taken by the evaluator from β^- decay and E γ for placement from the 4868 level is taken by the evaluator from the level energies.
- ^{*g*} 2005YaZW report E=362.842 *14* with I γ =0.65 *14* doubly placed from the 4324 and 4359 levels with I γ divided on the basis of coincidence data. 80.0% of I γ belongs with the 4324 level. E γ for each placement is taken by the evaluator from the energy level difference.
- ^{*h*} 2005YaZW report E γ =462.71 2 with I γ =0.058 *1*2. Only part of this transition belongs with ²⁰⁸Pb. The intensity for the component belonging to ²⁰⁸Pb was extracted by the authors from excitation function data. The energy is taken by the evaluator from the level energies.
- ^{*i*} 2005YaZW report E=1225.916 *13* with I γ =4.2 *4* doubly placed from the 4424 and 5924 levels with I γ divided on the basis of coincidence data. 90.0% of I γ belongs with the 4424 level. E γ for placement from the 5924 level is taken by the evaluator As 1225.41 7 from (d,p γ).
- ^{*j*} 2005YaZW report E=771.75 *3* with I γ =0.32 *5* doubly placed from the 4481 and 5195.4 levels with I γ divided on the basis of coincidence data. 50% of I γ is assigned to each placement. E γ for placement from the 4481 level is taken by the evaluator from the level energies. Since all the transitions from the 5195.5 level are multiply placed, the evaluator gives E γ =771.74 *20* from (d,p γ).
- ^{*k*} 2005YaZW report E=443.73 2 with I γ =0.47 *10* doubly placed from the 4698 and 4868 levels with I γ divided on the basis of coincidence data. 25.0% of I γ is assigned to the 4867 level. A comparison with branching In (d,p γ) suggests that the this percentage should Be closer to 40. A 40%–60% split would give reasonable agreement for both levels for the two reactions. E γ for each placement is taken by the evaluator from the level energy difference.
- ¹ 2005YaZW report E=1500.49 *3* with I γ =0.38 *3* doubly placed from the 4698 and 4974 levels with I γ divided on the basis of coincidence data. 75.0% of I γ belongs with the 4698 level. E γ for placement from the 4974 level is taken from the energy level difference.
- ^m 2005YaZW report E=386.31 3 with I γ =0.46 10 overlapping a background transition. They assign E=386.3 10 with I γ =10% of

$\gamma(^{208}\text{Pb})$ (continued)

the observed intensity to this placement. This gives $I\gamma/I\gamma(257\gamma+830\gamma)=0.15$ 5. This ratio is 0.48 18 In (d,p γ), suggesting that $\approx 30\%$ of the observed I γ should Be assigned to this placement.

- ^{*n*} 2005YaZW report E=868.89 2 with I γ =0.53 7 doubly placed from the 5075 and 5194 levels with I γ divided on the basis of coincidence data. 70.0% of I γ belongs with the 5194 level. E γ for placement from the 5075 level is taken by the evaluator from the level energies. For placement from the 5194 level, the evaluator takes E γ =869.43 20 from (d,p γ). The 5075 level is not populated In that reaction.
- ^o 2005YaZW report E=583.187 4 with I γ =57 10 doubly placed from the 3198 and 5195.4 levels with I γ divided on the basis of coincidence data. 99.9% of I γ belongs with the 3198 level. E γ for placement from the 5195.4 level is taken by the evaluator from the level energies.
- ^{*p*} 2005YaZW report E=2016.02 2 with I γ =1.02 6 doubly placed from the 5213 and 5214 levels with I γ divided on the basis of coincidence data. 76.0% of I γ belongs with the 5214 level. E γ for each placement is taken by the evaluator from the energy level difference.
- ^{*q*} 2005YaZW report E γ =2626.5 4 with I γ =0.78 3. 1996Ye01 establish E γ =2626.5 4 In coincidence with the 2614.5 γ As defining a level At 5241.1 4. 2005YaZW propose, on the basis of coincidence data, that 20% of this peak should Be placed deexciting a level At 6102.
- r Doublet with a background line. A 20% contribution from a ¹¹⁸Sn impurity line has been subtracted out.
- ^s 2005YaZW report E=2770.91 *3* with I γ =0.56 *2* doubly placed from the 5385 and 5969 levels with I γ divided on the basis of coincidence data. 86.0% of I γ belongs with the 5385 level. E γ for placement from the 5969 level is taken by the evaluator from (d,p γ) and E γ for placement from the 5385 level is taken from the level energies.
- ^t From 2000He14. Used As a calibration point.
- ^{*u*} From the level scheme. The value is a weighted average of 860.557 4 + 233.32 7=1093.88 7 and 510.77 4 + 583.187 2=1093.96 4. The authors' value of 1094.06 3 is from a close-lying doublet with a <5% contribution from a ²⁰⁷Pb G.
- ^{ν} 2005YaZW report E γ =702.21 8 with I γ =0.18 3 placed from the 4698 level. The energy fit is poor and from a comparison with branching In (d,p γ), about 75% of the intensity should Be placed elsewhere. In (d,p γ) there is also a 702 γ placed from the 5085 level. The evaluator assigns a component of the 702 γ seen In (n,n' γ) to the 5085 level. For each placement, the evaluator gives E γ As given by the energy level difference. From I γ (702 γ)/I γ (1223 γ)=0.041 6 and I γ (702 γ)/I γ (879 γ)=0.13 5 from (d,p γ) for the 4698 and 5085 levels, respectively, the evaluator gives I γ =0.038 4 and 0.043 15 for the components of the 702 γ from the 4698 and 5085 levels, respectively. The sum for these two deduced components is just 0.081 16, which still leaves a major component of the 702 γ unplaced.
- ^{*w*} 2005YaZW report E γ =1561.72 7 with I γ =0.152 14 placed from the 5037 level. The energy fit is poor, and the branching is a factor of two higher than In (d,p γ). E γ is taken by the evaluator from the level energies. Part of the intensity May belong to a 5688 level seen In (d,p γ). The evaluator assigns 50% of I γ to both placements. This gives branchings consistent with (d,p γ) for both levels. E γ for placement from the 5688 level is taken from (d,p γ).
- ^x 2005YaZW report E γ =1652.57 4 placed from the 5127 level. The energy fit is poor, and I γ /I γ (2512 γ) is a factor of three higher than In (d,p γ) and (p,p' γ). E γ is taken by the evaluator from the level energies. Part of the intensity could perhaps Be assigned to the 5649 level. The intensity can Be divided between the 5127 and 5649 levels such that the branchings for both levels agree with the (d,p γ) data.
- ^y 2005YaZW report a transition with E γ =1420.24 *3* and I γ =0.18 *2* placed entirely from the 5545 level. The branching of this transition is about a factor of four higher than In (d,p γ). Part of this transition May belong with the 5675 level where a 1420 γ is placed In (d,p γ). I γ In (n,n' γ) can Be divided such that the branching from both the 5545 and 5675 are consistent with (d,p γ). In view of this possible double placement, the 1420 γ is not included In the least-squares fit.
- ^{*z*} 2005YaZW report a transition with E γ =1387.37 *3* with I γ =0.24 *2* placed from the 5383 level. In (d,p γ), In addition to this placement, there is a 1387 γ placed from the 5649 level. From I γ (1387 γ)/I γ (2451 γ + 3034 γ)=0.28 *8* In (d,p γ), one expects I γ =0.031 *9* for a component of the 1387 γ placed from the 5649 level. In both (d,p γ) and (p,p' γ) there is also a 1388 γ placed from the 6086 level. From I γ (1387 γ)/I γ (1857 γ + 2035 γ + 3472 γ)=0.53 *4* In (d,p γ), one expects I γ =0.061 *3* for a 1388 γ from the 6086 level In (n,n' γ). These two additional placements of the 1387 γ leave I γ =0.15 *2* for placement from the 5383 level. E γ for placement from the 5649 and 6086 levels is taken from the level energies.
- ¹ 2005YaZW report a transition with $E\gamma$ =1523.10 *6* and $I\gamma$ =0.094 *9* placed entirely from the 5778 level. In (d,p γ), In addition to this placement, there is a 1523 γ placed from the 5649 level. From $I\gamma(1523\gamma)/I\gamma(2451\gamma + 3034\gamma)=0.65$ *14*, one expects $I\gamma$ =0.066 *16* for a component of the 1523 γ placed from the 5649 level. This reduces $I\gamma$ for the component from the 5778 level to 0.028 *18*, a value that gives agreement with branching from (d,p γ) for that level. E γ for placement of the 1523 γ from both the 5649 and 5778 levels is taken by the evaluator from the level energies.

γ (²⁰⁸Pb) (continued)

- ² 2005YaZW report levels At 6010, deexciting via $E_{\gamma}=1924$ and 2535, and At 6011 deexciting via $E_{\gamma}=1687$ and 3397. For the 6011 level, the two transitions give discrepant energies, the 1687 γ giving E(level)=6010.72 *15* and the 3397 γ giving 6011.64 *6*. For the 6010 level, the two transitions give consistent energies of 6009.78 *11* and 6009.78 *3*, respectively. The 1687 γ thus gives an E(level) lying 1 keV below that given by the 3398 γ and 1 keV above that given by the 1924 and 2535 γ 's. In (d,p γ), the 3397 γ is not reported and a 1686 γ is placed from the 6010 level. The branchings of the 1686, 1924, and 2535 γ 's In (d,p γ) and (n,n' γ) agree well. Thus, In spite of the energy discrepancy, the (d,p γ) scheme seems correct and is adopted by the evaluator. The 1687 γ is thus included with the 6010 level and removed from the 6011 level. E γ is taken from the level energies.
- ³ 2005YaZW report a transition with E γ =1113.57 *3* with I γ =0.31 *4* placed from the 5075 level. In both (d,p γ) and (p,p' γ) there is an 1113 γ placed from the 6086 level. From I γ (1113 γ)/I γ (1857 γ + 2035 γ + 3472 γ)=0.277 25 In (d,p γ), one expects I γ =0.033 *3* for an 1113 γ from the 6086 level In (n,n' γ). This leaves I γ =0.28 *4* for placement of the 1113 γ from the 5075 level. E γ for placement from the 6086 level is taken from the energy level difference.
- ⁴ 2005YaZW report a transition with $E\gamma$ =2338.765 *14* with $I\gamma$ =1.30 6 placed from the 4953 level. In (d,p γ), there is a 2338 γ placed from the 5813 level. From $I\gamma$ (2338 γ)/ $I\gamma$ (3199 γ)=0.85 *14*, on expects $I\gamma$ =0.133 *23* for a component of the 2338 γ placed from the 5813 level In (n,n' γ). This leaves $I\gamma$ =1.17 6 for placement of the 2338 γ from the 4953 level. E γ for placement from the 5813 level is taken from the level energies.
- ⁵ Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{208}_{82}{\rm Pb}_{126}$

 $^{208}_{\ 82} Pb_{126}$

 $^{208}_{\ 82} \mathrm{Pb}_{126}$

$^{208}_{\ 82} \mathrm{Pb}_{126}$

 $^{208}_{82}\text{Pb}_{126}$

24

 $^{208}_{82} \mathrm{Pb}_{126}$ -24

From ENSDF

 $^{208}_{82}\text{Pb}_{126}$ -24