²⁰⁸Pb(γ,p),(e,e'p) IAR 1975Sh12,1975Sh13

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007

E=19.2-29.0 MeV (1975Sh13); 25.0, 40.0 MeV (1975Sh12).

Others: 1971Da04, 1970Do03.

Proton groups with energies 11 and 15.3 MeV are observed for bombarding energies >25.2 MeV; $p(\theta)$ for these groups is isotropic (1975Sh12) which suggests that they are emitted through an isobaric analog resonance. For the background continuum $p(\theta)$ is strongly asymmetric. The authors conclude that 11.0- and 13.5-MeV proton groups are emitted from the 25-MeV IAR and interpret these resonances As IAR of possible 1⁻ and 2⁺ levels predicted In ²⁰⁸Tl At 1500(1⁻), 2100(1⁻), and 2800(2⁺) (1970Do03).

²⁰⁸Pb Levels

E(level)

24400

25000

27200[‡]

[†] Resonances At 24400 and 25000 were unresolved In the (γ ,p) cross section. E=25000 (1975Sh13), 24900 300 (1971Da04) for the combined resonances. 1975Sh13 deduce Γ_{γ} =530 eV 80 if $\Gamma(P)/\Gamma$ =1.0, and 700 eV 100 if $\Gamma(P)/\Gamma$ =0.75 for J=1.

[‡] 1975Sh13 deduce Γ_{γ} =150 eV 50 if $\Gamma(P)/\Gamma$ =1.0 and J=2. The authors point out that the value for Γ_{γ} May Be about half that given here if possible contributions from virtual photons are included.