$^{208}\mathbf{Pb}(\gamma,\!\mathbf{n}),\!(\gamma,\!\mathbf{pol}\;\mathbf{n})$

	Type	Author	History Citation	Literature Cutoff Date		
	Full Evaluatio	n M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007		
1969Bo14 E	(n)=0-40 keV					
1970Bo24 E	(n)=30-860 keV.					
1970Ve03 E($(\gamma) = 6-35$ MeV, FWHM $(\gamma) = 140$ l	eV At 10 MeV, ir	creasing to 400 keV At 2	25 MeV.		
1971Ba07 E	(n) = 3-870 keV.	· · · · · · · · · · · · · · · · · · ·	8			
1972To14 E((n) = 180 - 1000 keV.					
1975Ha26 E	(n)=30-850 keV.					
1975Jo04 E(n)=1670-4250 keV, FWHM=6.8 At 1000 to 78 keV At 5000.						
1975Sh19 E(n)=1160-3790 keV.						
1976Ho02 E	(pol N)=500-1000 keV.					
1977Ho03 E	(pol N)=180-320 keV, FWHM=2	2 keV At 180 to 4	keV At 320.			
1977La02 E(n)=840-2500 keV, FWHM=3 keV At 840 to 14 keV At 2500 E(pol N)=850-2700 keV, FWHM=20 keV At 850 to						
100 keV	At 2700.					
1978Va01 E	$(\gamma) = 8-13$ MeV.					
1979Ho12 E(n)=16-1000 keV, FWHM=0.2 At 180 to 1.5 keV At 1000.						
1981Bi13 E($(\gamma)=7.0-11.4$ MeV from Fe, Ni, a	nd $Cr(n,\gamma)$ source.				
1982Be04 E(γ)=9.9-11.2 MeV, FWHM(γ)=120 keV.						
1983Ba04 E(γ)=7-11 MeV from Ni and Cr(n, γ) source.						
1984Be55 $E(\gamma)=7-12.15$ MeV. Superseded by 1985Be55.						
1984Sm07 E	$E(\gamma)=9.2$ MeV from ¹³ C(p, γ), Do	ppler shift.				
1985Be55 E	$(\gamma)=7-12$ MeV bremsstrahlung. 1	Measured σ In 25-	keV steps.			
Others: 1971	Ba38, 1970Is07, 1977ShZS.					
S(n)=7367.87	7 5.					

In addition to the giant dipole excitation, 1970Ve03 report peaks In the total cross section At excitation energies of 7.6, 8.0, 8.3, 9.9, 11.2, 11.8? MeV corresponding to resonance energies of 200, 600, 900, 2500, 3800, and 4400? keV. The resonance At 9.9 MeV has a Γ of~500 keV. 1978Va01 report peaks At excitation energies 9.2, 9.8, 10.3, 10.7, 11.2, 11.6, and 12.3 MeV ($\Delta E=0.1$) corresponding to resonance energies 1800, 2400, 2900, 3300, 3800, 4200, and 4900 keV. 1984Be55 report peaks At excitation energies (Γ) of 7.6 (0.1), 8.0 (0.1), 8.5 (0.16), 9.0 (0.13), 9.3 (0.13), 10.0 (0.15), 10.6 (0.15) and 11.3 (0.22) corresponding to resonance energies of 200, 600, 1100, 1600, 1900, 2600, 3200, and 3900 keV. On the basis of $\sigma(\theta)$, 1981Bi13, 1982Be04, and 1983Ba04 show the presence of multipole mixing, probably E2-E1. In the excitation region 7-11 MeV (M1-E1 interference cannot Be ruled out). 1983Ba04 estimate an average B(E2) \uparrow of 0.17 5 per MeV In the energy region 7.8 to 10 MeV (%EWSR=16 5).

²⁰⁸Pb Levels

E(level) [†]	$\Gamma_{\gamma 0} (eV)^{\ddagger}$	Comments
S(n)+3.0 [#]	0.06 ^c 3	
$S(n)+10.1^{#}$	0.044 ^C 15	
$S(n)+16.2^{#}$	0.10 ^c 3	
S(n)+16.8	0.01	
S(n)+25.3?		E(level): reported by 1970Bo24. Not seen by 1971Ba07.
S(n)+30.4	0.3 ^{<i>a</i>}	
S(n)+37.6	0.64	
S(n)+41.1	3.5	
S(n)+48.2	0.02 ^d	
S(n)+90.5	1.3	
S(n)+102.3	0.23 ^a	
S(n)+115.2	1.1	
S(n)+127.0	1.4	
S(n)+130.9	0.76	
S(n)+156.3	0.46	

²⁰⁸Pb(γ ,n),(γ ,pol n) (continued)

²⁰⁸Pb Levels (continued)

E(level) [†]	Jπ&	$\Gamma_{\gamma 0} (eV)^{\ddagger}$	Comments
S(n)+181	1-@	7.3	J ^{π} : J ^{π} =1 ⁺ assigned by 1975Ha26, 1972To14, 1971Ba07 on the basis of $\sigma(\theta)$ data. J ^{π} =1 ⁻ confirmed In ²⁰⁷ Pb(N).
S(n)+248		1.64 ^{<i>a</i>}	
S(n)+256.1	1^{-0}	13.1	
S(n)+283.7		0.43 ^a	
S(n)+298		0.40	
S(n)+316.7	1-@	6.4	J ^{π} : J ^{π} =1 ⁺ assigned by 1975Ha26, 1971Ba07 on the basis of $\sigma(\theta)$ data. J ^{π} =1 ⁻ confirmed In ²⁰⁷ Pb(N).
S(n)+335		0.50	
S(n)+423		0.53	
S(n)+429		1.3 ^a	
S(n)+453		4.0 ^{<i>a</i>}	
S(n)+486		1.81 ^a	
S(n)+493		1.91 ^a	
S(n)+504		0.81 ^{<i>a</i>}	
S(n)+542	1-	6.1	
S(n)+548		0.38 ^d	
S(n)+553		3.69 ^a	
S(n)+600		0.37 ^a	
S(n)+606	1-	5.5	
S(n)+616	1-	8.9	J^{π} : from 1979Ho12 based on the interference pattern In $\sigma(\theta)$ between the 606 and 616 resonances. Earlier (γ ,pol n) measurements (1976Ho02) had led to a $J^{\pi}=1^+$ assignment, $J^{\pi}=1^-$ is confirmed In ²⁰⁷ Pb(N).
S(n) + 636		0.40 ^a	
S(n) + 644		0.13^d	
S(n)+653	1-	6.9	J ^{π} : J ^{π} =1 ⁺ assigned by 1975Ha26, 1971Ba07 on the basis of $\sigma(\theta)$ data. J ^{π} =1 ⁻ is confirmed In ²⁰⁷ Pb(N).
S(n)+701		3.1	
S(n)+728		0.85 ^a	
S(n)+738	1-	2.0	
S(n)+780		0.25 ^d	
S(n)+821		0.69 ^a	
S(n)+838		0.55 ^a	
S(n)+842		1.69 ^a	
S(n)+848	1-	4.1	
S(n)+857		1.7	
S(n)+888		0.37 ^a	
S(n)+900	. –	0.41 ^{<i>u</i>}	
S(n) + 911	1	1.9	
S(n) + 930 S(n) + 0.47		$0.41^{\circ\circ}$	
S(n) + 947 S(n) + 056	1-	1.35	
S(n) + 930 S(n) + 975	1	0.40^{a}	
S(n) + 975 S(n) + 980		1.43^{a}	
S(n) + 995		2.86^{a}	
S(n) + 1002	1-	3.4	authors value of 3.7 is a misprint (priv comm from author)
$S(n) + 1044 \ 10$		5.1	autors (autor) of on to a mophila (priveonini nom autor).
S(n)+1074 10			
S(n)+1117 10			
S(n)+1143 10			
S(n)+1154 10			
S(n)+1172 10			

²⁰⁸Pb(γ ,n),(γ ,pol n) (continued)

²⁰⁸Pb Levels (continued)

E(level) [†]	$\Gamma_{\gamma 0} (eV)^{\ddagger}$		Comments
S(n)+1192 10			
S(n)+1202 10			
S(n)+1212 10			
S(n)+1225 10	2.3 ^b 7		
S(n)+1237 10	2.1 ^b 7		
S(n)+1286 10			
S(n)+1293 10			
S(n)+1303 10			
S(n)+1328 10	1.9 ^b 2		
S(n)+1338 10	5.8 ^b 2		
S(n)+1365 10			
S(n)+1381 10			
S(n)+1409 10			
S(n) + 1436 I0			
S(n) + 1452 I0 S(n) + 1470 I0			
S(n) + 1470 T0 S(n) + 1503 T0			
S(n) + 1505 I0 S(n) + 1519 I0			
$S(n) + 1549 \ 10$ $S(n) + 1549 \ 10$			
S(n) + 1598 10			
\approx S(n)+1604			
S(n)+1649 10	2.8 ^b 2		
S(n)+1674 10	13.9 ⁰ 3		
S(n)+1732 10			
S(n)+1741 10			
S(n)+1780.4 ^e 3	2.6 ^e 3	$\Gamma_{\gamma 0}$: 1977La02 report 2.9 7.	
S(n)+1793.3 ^e 3	1.8 ^e 4	$\Gamma_{\gamma 0}$: 1977La02 report 2.6 6.	
S(n)+1807.3 ^e 3	4.2 ^e 9		
$S(n) + 1810.9^{\circ} 4$	3.2° 19		
$S(n) + 1820.0^{\circ}$ 3	9.3° 10		
$S(n) + 1838?^{\circ}$	10.7°7		
$S(n) + 1843.9^{\circ} 3$ S(n) + 1800.10	1.5 4		
S(n) + 1000 10 S(n) + 1040 10	1.6 <mark>b</mark> 3		
S(n) + 1055 - 10	1.0° 8		
S(n) + 1955 10 S(n) + 1077 10	4.0 0		
$S(n) + 1994 \ 10$			
S(n)+2032 10			
S(n)+2052 10			
S(n)+2066 10			
S(n)+2098 10			
S(n)+2157 10	2.0^{b} 4		
S(n)+2176 10	3.0 ^b 7		
S(n)+2207 10			
S(n)+2224 10			
S(n)+2280 10	0.94 ^b 19		
S(n)+2300 10	4.8 ^b 10		
S(n)+2320 10	0.69 <mark>b</mark> 13		
S(n)+2461 10			
S(n)+2505 10			
S(n)+2551 10	4.1 ^b 8		
S(n)+2594 10			

208 Pb(γ ,n),(γ ,pol n) (continued)

²⁰⁸Pb Levels (continued)

E(level)

Comments

13420

E(level): from 1970Ve03. Γ=4.05 MeV. %EWSR≈103.

configuration: isovector giant dipole resonance.

[†] For convenience In comparing the resonance energies with values reported In 207 Pb(n, γ) and 207 Pb(n,X), the values given are lab coordinate neutron energies corresponding to the inverse ${}^{207}Pb(n,\gamma)$ reaction. Thus, $E(n,\gamma)=1.0097 E(\gamma,n)$ to a sufficient accuracy considering the uncertainties quoted In the E(n). Except where noted, data are from 1979Ho12 for $E(n) \le 1002$ and from 1977La02 for $E(n) \ge 1044$. Uncertainties are 0.5 to 1.0 keV, unless given otherwise. Values of 1977La02 have been read by the evaluator from the authors' figures 2 and 3. They have been normalized to E(n)=910.4.9 from $^{207}Pb(n,\gamma)$ and 1674 10 from 1975Sh19.

Values given are ground-state decay widths (for J=1, except where noted otherwise) In eV, from 1979Ho12. Values are obtained relative to the ²H(γ ,n) cross section. Overall uncertainties are 15% for resonances with $\Gamma_{\gamma 0}$ >1 eV. Note that, on the basis of this normalization, $\Gamma_{\gamma 0}$ =3.5 5 for the 41.4 resonance compared with 5.07 18 obtained In 207 Pb(n, γ). The (n, γ) values are normalized to the value for the 41.4 resonance, a normalization 44% larger than In (γ ,n); however, As shown by 1979Ho12, the average excess, for 32 resonances, is 66%. Others: 1975Ha26, 1972To14.

From 1971Ba07.

[@] From 1977Ho03 based on measurement of neutron polarization At θ =90° and 135° with the assumption that the resonance is isolated.

& From 1976Ho02, except where noted otherwise, based on measurement of neutron polarization At θ =90° and 135° with the assumption that the resonance is isolated. 1977La02 suggest that the resonances centered At 850, 990, 1220, 1320, 1650, 1770, and 1920 contain At least one $J=1^{-}$ and one $J=1^{+}$ member, and that the resonances centered At 2140, 2260, 2290, and 2520 have At least one $J=1^-$ and one $J=1^+$ or 2^+ member. ^{*a*} Value given is $g\Gamma_{\gamma 0}$ where g=(2J+1)/2.

^b From 1977La02. The authors quote $\Gamma_{\gamma 0}$ =11.0 for E=651 relative to 4.2 for E=41.0. The evaluator has renormalized to $\Gamma_{\gamma 0}$ =6.9 for E=651 to correspond to 3.5 for E=41.0 as obtained by 1979Ho12. The uncertainties do not include the uncertainty due to absolute normalization.

^c From 1969Bo14 for J=2.

^d For J=2.

^{*e*} From 1984Sm07. Γ value for J=1.