²⁰⁴Hg(¹⁶O,¹²C) 1977De12

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007

E=88 MeV; FWHM \approx 225 keV; θ =80°, 85°, 90°.

L=88 MeV, FWHM≈225 keV, θ =80°, 85°, 90°. Authors searched for 4-particle, 4-hole "α-VIBRATIONAL" states In ²⁰⁸Pb. Authors calculate expected energy to Be somewhat lower than the 8440 estimate based on binding energies of ²⁰⁴Hg, ²⁰⁸Pb and ²¹²Po ground states. They estimate strength to Be approximately equal to the ²⁰⁸Pb(¹⁶O,¹²C)²¹²Po(g.s.) transition (1975De22). No "α-VIBRATIONAL" state was observed. At excitation energy of 7200 (predicted by 1976Br35), σ <1/4 of the expected value with a lower limit of 770 keV for the spreading of the α- vibrational state. Authors assume observed state At E=9300 is not the expected "α-VIBRATIONAL" state because of its high energy, although $\Gamma(\alpha)$ =2.4 keV *10* for the transition to this state compared with 1.4 keV 2 for the transition to ²¹²Po(g.s.).

²⁰⁸Pb Levels

E(level)

9300