⁹Be(²³⁸U,Xγ):isomer 2009A129

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	B. Singh, K. Zuber	ENSDF	12-Apr-2010						

2009A129 (also 2009A115): ²³⁸U beam at an energy of 1 GeV/nucleon was provided by the SIS-18 accelerator at GSI. The ≈ 2 s spills were separated by ≈ 2 s periods without beam, ²³⁸U ions impinged on a target of 2.5g/cm² ⁹Be + 223 mg/cm² Nb, the latter for electron stripping of the reaction products. The fragments were identified in flight on an event-by-event basis, while optimizing FRS for transmission of ²⁰⁵Pt ions. Measured delayed γ , $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, (fragments) γ coin, (fragment) β coin, and isomer half-life. Six Double-sided Si detectors (DSSDs) were used for particle detection and RISING array of 15 Euroball cluster Ge detectors for γ rays. Total number of ²⁰⁸Hg implants were \approx 700. These implants were correlated with γ , β and Hg K_{α} x rays. Results interpreted with shell-model calculations using OXBASH code including 2d_{5/2}, 2d_{3/2}, 3s_{1/2}, 1h_{11/2} proton orbitals below

Z=82, and $2g_{9/2}$, $1i_{11/2}$, $1j_{15/2}$ neutron orbitals above N=126. Comparison of E(first 4⁺)/E(first 2⁺) ratios for even-even nuclei near ²⁰⁸Pb.

²⁰⁸Hg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 [#]	0^+ (2 ⁺)		Configuration $-v\sigma^2$, with mixing of $\pi(s_1, s_2, s_3)$
1093.9 [#] 7	(2^{+}) (4^{+})		$\xi_{9/2} = \xi_{9/2} + \xi_{9$
1296.9 # 9	(6^{+})		
1296.9+x [#]	(8 ⁺)	99 ns 14	$T_{1/2}$: from $\gamma(t)$ gated on 669.0 γ , 424.9 γ and 203.0 γ (2009A129).

[†] From E γ 's, assuming Δ (E γ)=0.5 KeV for each γ ray.

 \ddagger From shell-model predictions and probable yrast sequence.

[#] Dominant configuration= $\nu g_{9/2}^2$.

$$\gamma(^{208}\text{Hg})$$

The 203, 425 and 669 γ rays are in mutual coincidence.

E_{γ}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f J	I_f^{π} Mult	α^{\dagger}	Comments
x		1296.9+x	(8 ⁺)	1296.9 (6	5 ⁺)		E _y : x<83.1 keV (binding energy of the K electron in Hg), as suggested by the observed low intensity of Hg K _{α} x rays. B(E2)(W.u.)=1.9 4–1.58 22 for a transition of E _y =20-80 keV as compared to B(E2)(W.u.)=1.22 from shell-model calculations (2009Al29).
							Comparison with similar 8 ⁺ to 6 ⁺ transition in N= ^{128, 212} Poh B(E2)(W.u.)=2.30 gives $(E\gamma)^5(1+CC)=3.4\times10^{10}$ for isomeric transition in ²⁰⁸ Hg, which suggests x closer to 20 keV than 80 keV.
203.0	77 11	1296.9	(6+)	1093.9 (4	4 ⁺) (E2)	0.37	$\alpha(\exp)=0.36\ 6\ (2009A129)$ Mult.: from $\alpha(\exp)$ deduced from intensity balance consideration, assuming cascade of E2 transitions.
424.9 669.0	107 <i>16</i> 100 <i>16</i>	1093.9 669.0	(4^+) (2^+)	$669.0 (2) 0.0 0^{-1}$	2 ⁺) +		

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

