208 Po ε decay 1993Sa14

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007

Parent: ²⁰⁸Po: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.898$ y 2; $Q(\varepsilon)=1400.5$ 24; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=0.0040 4 ²⁰⁸Po- $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay: $\mathscr{H}\varepsilon+\mathscr{H}\beta^+=0.0040$ 4 from Ti(γ 's from 925 level In ²⁰⁸Bi)/I α (5115 α) (1993Sa14). The authors' value of 0.0042 4 has been recalculated by the evaluator using $\alpha(291\gamma)=0.41$ 6. The authors used 0.522. Other: 0.00223 23 from Ιγ(539γ+571γ+603γ)=0.001675 17 (1966Ha29).

²⁰⁸Bi Levels

E(level)	J^{π}
0.0	5+
63.16 7	4^{+}
601.52 6	4^{+}
633.27 7	3+
925.06 7	2^{+}

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(475.4 24)	925.06	100	13.13 6	100	εK=0.7484; εL=0.1871 3; εM+=0.06446 12

[†] For absolute intensity per 100 decays, multiply by 4.0×10^{-5} 4.

$\gamma(^{208}\text{Bi})$

I γ normalization, I(γ +ce) normalization: from Σ Ti(γ 's to g.s.+63, excluding 63 γ)=100. *γγ*: see 1969Ha33. $\gamma\gamma\gamma$: see 1966Ha29.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	$E_i(level)$	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	δ	α@	$I_{(\gamma+ce)}^{\#}$	Comments
31.8 1	1.19 <i>12</i>	633.27	3+	601.52 4+	M1(+E2)	<0.10	63 8	75 4	ce(L)/(γ +ce)=0.75 7; ce(M)/(γ +ce)=0.18 3; ce(N+)/(γ +ce)=0.056 10 ce(N)/(γ +ce)=0.046 8; ce(O)/(γ +ce)=0.0092 16; ce(P)/(γ +ce)=0.00105 15 I $_{\gamma}$: from I(γ +ce) and α . Mult., δ : from Adopted Gammas. I(γ +ce): from an intensity balance At the 601 level.
63.13 10	15.1 <i>15</i>	63.16	4+	0.0 5+	M1(+E2)	<0.14	7.8 5		α (L)=5.9 4; α (M)=1.41 10; α (N+)=0.44 3 α (N)=0.359 25; α (O)=0.073 5; α (P)=0.0085 4 Mult., δ : from the requirement of an intensity balance At the 63 level, I(γ +ce)=124 5. With the adopted I γ this yields δ <0.14 and α =7.8 5.

²⁰⁸Po ε decay **1993Sa14** (continued)

$\gamma(^{208}\text{Bi})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α [@]	Comments
291.81 5	100	925.06	2+	633.27 3+	M1+E2	0.57 26	0.41 6	α(K)=0.33 6; α(L)=0.064 5; α(M)=0.0154 9; α(N+)=0.0048 3 α(N)=0.00393 21; α(O)=0.00079 5; α(P)=9.0×10-5 9 Mult.,δ: from the requirement that Ti(291γ)=Ti(539γ+570γ+601γ) one gets α(291γ)=0.41 6 and thus mult=M1+E2 with δ=0.57 26. 1966Ha29 report K/LM=6.5 9; however, that value does not agree with either M1 (4.68) or E2 (1.23).
538.39 8	22.2 17	601.52	4+	63.16 4+	M1 [‡]		0.0964	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0788 \ 11; \ \alpha(\mathbf{L}) = 0.01341 \ 19; \\ &\alpha(\mathbf{M}) = 0.00314 \ 5; \ \alpha(\mathbf{N}+) = 0.000988 \ 14 \\ &\alpha(\mathbf{N}) = 0.000804 \ 12; \ \alpha(\mathbf{O}) = 0.0001644 \ 23; \\ &\alpha(\mathbf{P}) = 1.96 \times 10^{-5} \ 3 \end{aligned}$
570.13 7	61 4	633.27	3+	63.16 4+	M1 [‡]		0.0829	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0678 \ 10; \ \alpha(\mathbf{L}) = 0.01151 \ 17; \\ &\alpha(\mathbf{M}) = 0.00270 \ 4; \ \alpha(\mathbf{N}+) = 0.000848 \ 12 \\ &\alpha(\mathbf{N}) = 0.000690 \ 10; \ \alpha(\mathbf{O}) = 0.0001411 \ 20; \\ &\alpha(\mathbf{P}) = 1.684 \times 10^{-5} \ 24 \end{aligned}$
601.52 7	47 3	601.52	4+	0.0 5 ⁺	M1 [‡]		0.0720	α (K)=0.0589 9; α (L)=0.00999 14; α (M)=0.00234 4; α (N+)=0.000736 11 α (N)=0.000599 9; α (O)=0.0001224 18; α (P)=1.460×10 ⁻⁵ 21
861.82 8	32.7 24	925.06	2+	63.16 4+	[E2]		0.00938	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00732 \ 11; \ \alpha(\mathbf{L}) = 0.001565 \ 22; \\ &\alpha(\mathbf{M}) = 0.000377 \ 6; \ \alpha(\mathbf{N}+) = 0.0001175 \ 17 \\ &\alpha(\mathbf{N}) = 9.62 \times 10^{-5} \ 14; \ \alpha(\mathbf{O}) = 1.92 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{P}) = 2.10 \times 10^{-6} \ 3 \end{aligned}$
925.11 <i>13</i>	2.3 11	925.06	2+	0.0 5+	[M3]		0.113	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0868 \ 13; \ \alpha(\mathbf{L}) = 0.0196 \ 3; \\ &\alpha(\mathbf{M}) = 0.00480 \ 7; \ \alpha(\mathbf{N}+) = 0.001515 \ 22 \\ &\alpha(\mathbf{N}) = 0.001236 \ 18; \ \alpha(\mathbf{O}) = 0.000250 \ 4; \\ &\alpha(\mathbf{P}) = 2.89 \times 10^{-5} \ 4 \end{aligned}$

[†] Other: 1969Ha33.

[‡] 1966Ha29 report $\alpha(K)\exp=0.067 \ I$ for the triplet 538 γ +570 γ +601 γ . K/LM=5.5 15 for the 570 γ and 5.0 9 for the 601 γ yield δ <1.3 for both transitions. The measured $\alpha(K)\exp$ is consistent with mult=M1 for all three transitions although small E2 admixtures cannot Be ruled out. In particular, the data allow $\delta(570\gamma)<0.4$, $\delta(601\gamma)<0.5$, and $\delta(538\gamma)<0.7$, with the limits In each case deduced with the other two transitions taken As pure M1.

[#] For absolute intensity per 100 decays, multiply by 2.27×10^{-5} 23.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

²⁰⁸Po ε decay 1993Sa14

Decay Scheme

