²⁰⁹Bi(p,d) 1973Cr05

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007							

E=35 MeV. FWHM<5 keV.

The authors point out that the (p,d) reaction on ^{209}Bi is expected to populate states with configuration= $\pi 1 \text{h}_{9/2} \nu (\text{nlj})^{-1} \text{J}$. expected hole states are $3\text{p}_{1/2}$, $2\text{f}_{5/2}$, $3\text{p}_{3/2}$, $1\text{i}_{13/2}$, $2\text{f}_{7/2}$, and $1\text{h}_{9/2}$. All the states expected on the basis of this multiplet interpretation have been observed, with the possible exception of the 2^- member of the $\pi 1 \text{h}_{9/2} + \pi 1 \text{i}_{13/2}^{-1}$ multiplet. The authors point out that they see No evidence for this state At 2716 as reported In $^{209}\text{Bi}(d,t)$. The 2901 level appears to have L=6; however, its small strength suggests that, even if $J^{\pi}=2^-$, the 2^- strength is fractionated. In (p,n γ), 1985RoZT suggest that this 2^- state is At 2893, agreeing with the suggestion of 1973Cr05. The L=(0) angular distribution for the 3335 and 3355 peaks suggests that the $3\text{s}_{1/2}$ hole state is also being populated, but the cross section ratio implies that the $\pi 1\text{h}_{9/2} \nu 3\text{s}_{1/2}^{-1}$ states are fragmented.

²⁰⁸Bi Levels

 $J^{\pi}(^{209}Bi)=9/2^{-}$.

E(level)@	$J^{\pi}e$	$_{ m L}^{\dagger}$	s [‡]	Community
				Comments
0.0	5+	1	1.05	
63.4 7	4+	1	0.87	
511.4 8	6+	3	1.33	
603.0 8	4+	3	0.93	
631.8 [#] 8	5+,3+	3	1.89	
652.3 8	7+	3	1.52	
888.6 8	5+	1	1.02	
927.3 <mark>b</mark> 9	2+	3	0.48	
961.2 9	4+	1	0.73	
1035.6 <i>15</i>				
1071.2 <i>15</i>	3+	1	0.60	
1097.4 <i>15</i>	6+	1	1.19	
1533.5 <i>15</i>				
1575.6 <i>15</i>	10-	6	2.24	
1628.8 <i>15</i>				
1664.1 <i>16</i>	8-	6	2.05	
1708.2 16	5-	6	1.22	
1720.6 ^c 16	$6^{-},7^{-}$	6	2.56	
1791.5 <i>15</i>	9-	6	1.95	
1843.9 <i>15</i>	4-	6	0.92	
1875.7 <i>15</i>	2-	1	≈0.02	
1924.7 <i>16</i>	3 ⁻	6	0.70	
2345.9 22	7+	3	1.49	
2391.2 ^d 22	4+,5+	3	1.89	J^{π} : a 4 ⁺ , 5 ⁺ doublet is confirmed In Adopted Levels.
2414.9 22	6+	3	1.29	
2434.2 23	11-	6	2.50	
2463.5 22	3 ⁺	3	0.72	
2507.7 22	2+	3	0.46	
2667.5 22	8+	3	1.54	
2727.0 <i>23</i> 2891.6 <i>23</i>	1+	3	0.35	
2900.6	$(2^{-})^{f}$	(6)	0.23	
3057 <i>3</i> 3079 <i>3</i>				
3079 3 3122 <i>3</i>		1		
3149 3		1		
J177 J		1		

²⁰⁹Bi(p,d) **1973Cr05** (continued)

²⁰⁸Bi Levels (continued)

E(level) @	L [†]	S [‡]	E(level)@	L [†]	S [‡]	E(level)@	L^{\dagger}
3220 <i>3</i>			3473 <i>3</i>	5(+3) ^a	1.28 <mark>&</mark>	3776 <i>3</i>	
3248 <i>3</i>			3533 <i>3</i>	$5(+3)^{a}$	0.59 <mark>&</mark>	3896 <i>3</i>	(5)
3281 <i>3</i>	3+5 a	0.33 <mark>&</mark>	3550 <i>3</i>	$5(+3)^{a}$	0.30	4025 <i>4</i>	3
3326 <i>3</i>			3574 <i>3</i>	5	1.79	4194 <i>4</i>	
3335 <i>3</i>	0		3620 <i>3</i>			4555 <i>4</i>	3
3355 <i>3</i>	0		3671 <i>3</i>			4568 <i>4</i>	1
3371 <i>3</i>	3+5 ^a	0.57 <mark>&</mark>	3697 <i>3</i>			4599 <i>4</i>	1
3396 <i>3</i>			3732 <i>3</i>			4629 <i>4</i>	3
3421 <i>3</i>	5(+3) ^a	1.81 <mark>&</mark>	3751 <i>3</i>				

[†] From DWBA.

[‡] For each L, values are based on a comparison of σ with that for the corresponding single-hole state In ²⁰⁸Pb(p,d). For L=1, the g.s. and 64 level are assumed to exhaust the p_{1/2} strength. The other L=1 states are assumed to Be p_{3/2} (1973Cr05). For L=3, the group of states At 511-927 are interpreted As 2f_{5/2}, those At 2346-2892 as 2f_{7/2}.

[#] Doublet based on peak strength and broadening. The separation of the two peaks is≤4.5 keV. A doublet with $J^{\pi}=3^{+}$ and 5^{+} is confirmed In Adopted Levels.

[@] From a comparison with energies from $(p,n\gamma)$, the energies In (α,d) above 500 keV show a deviation of +1.2 At 500 keV increasing linearly to +7.6 keV At 3 MeV. Where used In Adopted Levels, and for correlation with levels reported In other reactions, the evaluator has lowered the authors' values using the relation E(corrected)=0.99747E(authors).

[&]amp; S-value corresponds to L=5 component In the peak.

^a $\sigma(\theta)$ indicates some L=3 contribution.

^b There is some evidence for the presence of the 939 level observed In ²⁰⁷Pb(³He,d), but it is not clearly resolved from the 927 level.

^c Doublet based on strength. No broadening is observed so the two states are <3 keV apart.

^d Doublet based on strength.

^e From authors based on their assumption that, within each multiplet, level strength is proportional to 2J+1.

Assignment is tentative. The level is weak and is just resolved from the 2892 level. The authors point out that the limited angular distribution is suggestive of L=6; however, the small strength suggests that either the 2⁻ strength is fragmented or the assignment is incorrect.