²⁰⁸Bi IT decay

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 108,1583 (2007)	1-Jun-2007

Parent: ²⁰⁸Bi: E=1571.1 8; $J^{\pi}=10^-$; $T_{1/2}=2.58$ ms 4; %IT decay=100.0 K x ray: I(K x ray)/I(921 γ)=0.50 8 (1968Bo23), 0.44 9 (1968Ga17).

1958Du80	²⁰⁹ Bi(γ,n) E≤22 MeV
1961Gl16	²⁰⁹ Bi(n,2n) E=14.7 MeV
1962Mo19	²⁰⁸ Pb(p,n), ²⁰⁹ Bi(p,pn) E=9 MeV
1966Me02	²⁰⁹ Bi(n,2n) E=14.7 MeV
1967Hi08	209 Bi(γ ,n)
1968Bo23	²⁰⁸ Pb(d,2n) E=13 MeV
1968Ga17	209 Bi(γ ,n)
1973Sa22	²⁰⁹ Bi(n,2n) E=14.7 MeV
1974Hu11	²⁰⁸ Pb(d,2n) E=18 MeV
1975WhZY,	1974WhZT ²⁰⁴ Hg(⁷ Li, 3n) E=34 MeV
1976Ga33	²⁰⁹ Bi(n,2n) E=14.7 MeV
1986Ar12	Pb(p,xn) E=20 MeV
1995An36	²⁰⁹ Bi(n,2n) E=14 MeV

²⁰⁸Bi Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	5+		
64.1 8	4+		
510.3 5	6+	<8 ns	$T_{1/2}$: from $(921\gamma)(510\gamma)(t) < 8$ ns $(1958Du80)$.
650.1 6	7+		
1571.1 8	10^{-}	2.58 ms 4	g=0.2674 14
			$T_{1/2}$: weighted average of 2.6 ms <i>l</i> (1961G116), 2.5 ms <i>l</i> and 2.6 ms <i>l</i> (1962Mo19), 2.7 ms <i>l</i> (1966Me02), 2.53 ms 5 (1967Hi08), 2.65 ms <i>l</i> 4 (1973Sa22), 2.7 ms <i>l</i> (1976Ga33), and 2.58 ms 26 (1995An36). Others:1986Ar12, 1958Du80.
			g-factor: from NMR-PAD (1974Hu11). Authors' value is corrected for diamagnetic shift and Knight shift. The Knight-shift correction is from 1985No09, and is slightly different from that applied by the authors. The uncorrected value is 0.2658 14.

 † From a least-squares fit to the adopted $E\gamma$ data.

$\gamma(^{208}{\rm Bi})$

I γ normalization, I(γ +ce) normalization: from I(γ +ce 921 γ)=100. $\gamma\gamma$: see 1967Hi08.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α@	$I_{(\gamma+ce)}^{\#}$	Comments
≈64 139.8 <i>5</i>	0.27 7	64.1	4 ⁺	0.0 5 ⁺ 510.3 6 ⁺	M1(+E2)	<0.14	7.8 5	2.4 6	
139.8 5	14.4 20	650.1	7+	510.3 6+	M1(+E2)	< 0.33	3.81 11		α (K)=3.05 <i>15</i> ; α (L)=0.580 <i>25</i> ; α (M)=0.138 <i>7</i> ; α (N+)=0.0432 <i>21</i>

²⁰⁸Bi IT decay (continued)

$\gamma(^{208}\text{Bi})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	δ	α@	Comments
								α (N)=0.0352 <i>18</i> ; α (O)=0.0071 <i>3</i> ; α (P)=0.000825 <i>17</i> Mult., δ : α (K)exp=3.2 <i>8</i> from K x ray/ γ (1968Bo23) gives δ <0.62, α (exp)=4.1 <i>10</i> from scin $\Sigma \gamma/\gamma$ (1967Hi08) gives δ <0.34, K/L=6.3 <i>15</i> (1968Bo23) gives δ <0.34, and α (exp)=4.4 + <i>11</i> -7 from the requirement of an intensity balance At the 650 level gives δ <0.33
446.0 10	2.3 6	510.3	6+	64.1 4+	[E2]		0.0406 7	$\alpha(K)=0.0273 \ 4; \ \alpha(L)=0.01002 \ 16; \\ \alpha(M)=0.00253 \ 4; \ \alpha(N+)=0.000780 \ 13 \\ \alpha(N)=0.000644 \ 11; \ \alpha(O)=0.0001244 \ 20; \\ \alpha(P)=1.196 \times 10^{-5} \ 19$
510.3 5	75 5	510.3	6+	0.0 5+	E2(+M1)	>1.3	0.044 15	$\alpha(K)=0.034 \ I3; \ \alpha(L)=0.0082 \ I7; \ \alpha(M)=0.0020 \ 4; \ \alpha(N+)=0.00062 \ I2 \ \alpha(N)=0.00051 \ I0; \ \alpha(O)=0.000101 \ 21; \ \alpha(P)=1.1\times10^{-5} \ 3 \ \delta: \ from \ K/L=3.2 \ I5 \ (1968Bo23).$
650.1 8	24 3	650.1	7+	0.0 5+	E2		0.0169	$\alpha(K)=0.01260 \ I8; \ \alpha(L)=0.00324 \ 5; \alpha(M)=0.000794 \ I2; \ \alpha(N+)=0.000247 \ 4 \alpha(N)=0.000203 \ 3; \ \alpha(O)=3.99\times10^{-5} \ 6; \alpha(P)=4.15\times10^{-6} \ 6 Mult.: \ K/L=3.6 \ I2 \ (1968Bo23) \ gives \delta(E2/M1)>1.8. Placement In the decay scheme rules out an M1 component.$
921.0 5	100	1571.1	10-	650.1 7+	E3(+M4)	<0.05	0.0200 2	α(K)=0.0144 3; α(L)=0.00428 8; α(N)=0.001066 20; α(N+)=0.000332 7 α(N)=0.000273 5; α(O)=5.39×10-5 10; α(P)=5.62×10-6 11 Mult.,δ: α(K)exp=0.017 6 (1968Bo23) gives mult=E3(+M4) with δ<0.25. From the recommended upper limit of 10 for the γ-ray strength, one gets δ<0.05.

[†] From 1968Bo23. Other: 1968Ga17. [‡] From relative Ice(K) and I γ data of 1968Bo23 normalized so that α (K)exp(140 γ)=3.05 *14* (see 139 γ below).

[#] For absolute intensity per 100 decays, multiply by 0.9804.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

²⁰⁸Bi IT decay

 $^{208}_{83}{\rm Bi}_{125}$