Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	E. A. Mccutchan	ENSDF	1-Jun-2022	

 $Q(\beta^{-})=7.4\times10^{3} SY; S(n)=3.3\times10^{3} SY; S(p)=9060 SY; Q(\alpha)=1.2\times10^{3} SY$ 2021Wa16 $Q(\beta^{-}n)=2510$ (syst) 300 (2021Wa16).

2010Al24: ²⁰⁸Au nuclide produced in ⁹Be(²³⁸U,X) reaction with E = 1 GeV/nucleon produced by the SIS synchrotron at GSI facility. Fragments were analyzed with the Fragment Recoil Separator (FRS) and identified using magnetic rigidity, velocity, time-of-flight, energy loss and atomic number of the fragments.

	²⁰⁸ Au Levels
E(level)	Comments
0	$\%\beta^{-}=100; \%\beta^{-}n=?$ Production $\sigma=0.748$ nb (from e-mail reply of Oct 29, 2010 from H. Alvarez-Pol, which also stated that further analysis was in progress).

The β^- and delayed neutron decay are the only decay modes expected.

Calculated $\%\beta$ ⁻n=4 (2019Mo01).

E(level): it is assumed that the observed fragments correspond to nuclei in their ground state.

From A/Z plot (figure 1 in 2010Al24), 15 or 18 events are assigned to ²⁰⁸Au.

 $T_{1/2}$: >300 ns from time-of-flight as given in 2006Ca30 for a similar setup. Actual half-life is expected to be much larger as suggested by the calculated value of 9.5 s (2019Mo01).