²⁰⁵Tl(t,p) 1969Ha11

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev, S. Lalkovski	NDS 112, 707 (2011)	1-Aug-2010

Facility: Aldermaston Tandem; Beam: E(t)=13 MeV, FWHM \approx 25 keV; Target: 0.25 mg/cm² enriched to 99% in ²⁰⁵Tl and evaporated on carbon backing; Detectors: multi-angle spectrograph, photo emulsions; Measured: $\sigma(\theta)$.

²⁰⁷Tl Levels

E(level) [†]	Jπ‡	L#	Comments
0.0	$1/2^{+}$	0	configuration: $\pi(3s_{1/2})^{-1}$.
355	3/2+@		configuration: $\pi(2d_{3/2})^{-1}$.
1693	5/2+ @		configuration: $\pi (2d_{5/2})^{-1}$.
2689	- /		J^{π} : $(7/2^{-})$ based on the weakly coupled particle-hole-vibrational approach (1969Ha11).
			configuration: Probable member of the $\pi(3s_{1/2})^{-1}x^{3-1}$ doublet.
2721			J^{π} : $(5/2^{-})$ based on the weakly coupled particle-hole-vibrational approach (1969Ha11).
			configuration: Probable member of the $\pi(3s_{1/2})^{-1}x^{3-1}$ doublet.
2921			J^{π} : (9/2 ⁻) based on the weakly coupled particle-hole-vibrational approach (1969Ha11).
			configuration: Probable member of the $\pi(2d_{3/2})^{-1}x^{3-1}$ quadruplet.
3000			J^{π} : (7/2 ⁻) based on the weakly coupled particle-hole-vibrational approach (1969Hall).
21.50			configuration: Probable member of the $\pi(2d_{3/2})^{-1}x3^{-1}$ quadruplet.
3158			J^{*} : (5/2) based on the weakly coupled particle-hole-vibrational approach (1969Ha11).
2011			configuration: Probable member of the $\pi(2d_{3/2})^{-1}x^{-3}$ quadruplet.
3211			$J^{(3)}(3/2)$ based on the weakly coupled particle-hole-vibrational approach (1969Hall).
3311			conliguration: Probable member of the $\pi(2a_{3/2})^{-1}$ X5 quadrupted.
5511			J . (11/2) based on the weakly coupled particle-hole-vibrational approach (1909)1a11).
3351			I^{π} : (9/2 ⁻) based on the weakly coupled particle-hole-vibrational approach (1969Hall)
5551			configuration: Probable member of the $\pi(3_{3_{1/2}})^{-1}x^{5-}$ doublet
3460			E(level): Probably unresolved lines $(1969Ha11)$.
2.00			J^{π} : (7/2 ⁻ :13/2 ⁻) based on the weakly coupled particle-hole-vibrational approach (1969Hal1).
			configuration: Probable member of the $\pi(2d_{3/2})^{-1}x5^{-1}$ multiplet.
3588			E(level): Probably unresolved lines (1969Ha11).
			J^{π} : (7/2 ⁻ :13/2 ⁻) based on the weakly coupled particle-hole-vibrational approach (1969Hal1).
			configuration: Probable member of the $\pi(2d_{3/2})^{-1}x5^{-1}$ multiplet.
4352	1/2+	0	
4536	$1/2^{+}$	0	
45/4			

[†] From 1969Ha11. Authors' quoted uncertainty is 20 keV; however a comparison of the energies with the Adopted Levels indicates that the (t,p) values are too large by 10 keV for the 1682.48-keV level increasing to 15 keV for the 2985.15-keV, 3142.91-keV, 3295.5-keV and 3335.68-keV levels.

[±] Based on L-value measurements, unless otherwise noted.

[#] Based on $\sigma(\theta)$ and systematics of L=0 lines (1969Ha11).

[@] From the Adopted Levels